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ABSTRACT

We theoretically study the dynamics photo-induced exciton migration in

linear conjugated polymeric chains. Considering coupling between the local

torsional modes and electronic degrees of freedom at each polymer subunit

(rotors), we propose a model to understand the effect of conjugation breaks

caused by the torsional motion within the backbone of the polymer chain.

As a first step, we study the diffusion of the exciton in ordered chains and

derive an analytic expression for its time-averaged transition probability

as function of chain length of the polymer. Further, we have investigated

ordered chains with a single impurity to understand its impact on end-to-

end exciton migration. Using configurational averaging over a large sample

space, we calculate the end-to-end transition probability for systems with

static torsional disorder. We propose a conjecture that the time-averaged

transition probability for end-to-end exciton migration is always greater in

cased of ordered systems than in case of any disordered system. Finally, we

propose a scheme based on exact diagonalisation method to numerically solve

the complete Hamiltonian proposed in our model, to understand the exciton

migration dynamics of polymer chains with dynamic torsional disorder.

Keywords:Exciton migration, Torsional disorder, Linear Conjugated

Polymers, Exact Diagonalisation, Configurational averaging
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1

“Nobody ever figures out what life is all

about, and it doesn’t matter. Explore the

world. Nearly everything is really inter-

esting if you go into it deeply enough.”

-Richard Feynman

1
Introduction

An Exciton is a bound state of an excited electron that is electrostati-

cally held by a hole. The term ‘Exciton’ was first coined by Yakov Frenkel

to describe a quasiparticle, an excitation wave packet formed by the super-

position of excitation waves [1]. An important property of these excitons

is their ability to move i.e. the transfer of excitation energy from one site

to another [2]. Exciton dynamics or the dynamics of the excitation energy

transfer plays a crucial role in the photoresponse of molecular systems like

the light-harvesting complexes in photosynthetic species, organic semicon-

ductors, and molecular aggregates. The performance of organic solar cells,

OLEDs (organic light emitting diodes) and sensors is dependent on the

efficiency of exciton transport. Many aspects of this process of energy transfer

or transport mechanism remain elusive and have been the subject of many

studies.

Conventionally, the transfer of excitation energy from a donor to an acceptor

has been described perturbatively in terms of Förster’s resonance energy

transfer (FRET) mechanism [3]. While such a theoretical framework disre-

gards the role of quantum coherence, experimental investigations in the last
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decade have provided evidence for a wave-like energy transfer mechanism

that operates in ultrashort timescales [4]. These quantum effects were first

observed in the case of FMO (Fenna-Mathew-Olson) complex, a photosyn-

thetic light harvesting complex found in the green sulfur bacteria. The near

quantum efficiency of energy conversion has been attributed to the existence

of long-lived coherence in these molecules. Interestingly, similar results were

reported in case of conjugated polymers, where the intramolecular exciton

migration was found to occur in a coherent fashion [5]. These findings

that excitons could surf along the chain of a conjugated polymer preserving

coherence at ambient temperature indicate the presence of certain structural

features that preserve these quantum effects. Certainly, a detailed study to

identify these aspects of structure and bonding would not only help us in

improving the efficiency of organic semiconductor devices but also design

novel functional materials. In the following sections, we delve on some of

the ideas about excitation energy transfer to get insights to understand the

origin of long lived coherence in molecular systems.

1.1 Regimes of Excitation Energy transfer

The actual mechanism of excitation energy transfer in molecular systems

is determined by the relative time scales at which intramolecular vibrational

relaxation (τrel) and transfer of excitation(τtrans) occur. τrel is the time taken

for the intramolecular vibrations to completely relax to thermal equilibrium

after the electronic transition and τtrans is the time taken for movement

of excitation energy from the donor molecule to the acceptor molecule [6].

These factors distinguish the excitation energy transfer into three regimes.

This classification and their brief description in the following sections

(I) Incoherent Transfer (FRET) where τrel � τtrans

(II) Coherent Transfer, where τrel � τtrans

(III) Intermediate Coupling Regime (Partial Coherent exciton transfer).
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Figure 1.1: Different Regimes of Excitation Energy Transfer(EET)

Image taken from: May, V., and Kühn, O. (2008)

Förster Resonance Energy Transfer

The classical theory of Förster Resonance Energy Transfer (FRET) considers

weak coupling between electronic transitions of donor-acceptor chromophores.

These interactions are treated perturbatively and the spectral overlap serves

as a necessary condition to preserve the conservation of energy. Accordingly,

the rate constant of energy transfer (k) is inversely proportional to sixth

power of the inter-chromophore separation (R).

k =
1

τD

�
Ro

R

�6

(1.1)

Where τD is the lifetime of the donors’ excited state 1 and Ro is the Förster

radius. This distance dependence was experimentally studied by Stryer and

Haugland in macromolecules, who proposed that under suitable conditions

the energy transfer process could be used as an optical ruler to measure the

distance between chromophores that are separated by 10 - 60Å[7].

1Here τD is same as the relaxation time(τrel)
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Over the decades, following the initial work done by Förster, the theory

underpinning the mechanisms of energy transfer have been subject to many

changes. The deviations from the distance dependence of 1
R6 are seen, as

the dipole approximation fails at very close and very large distances of

separation. Inherently, Förster theory needs complete relaxation of the donor

for the transfer of excitation energy to occur i.e. the intra-molecular relax-

ation time (τrel) is much less than transition time (τtrans). The rapid intra-

molecular relaxation of the donor species gives rise to dephasing and leads to

incoherent transfer of excitation energy and migration is occurs in a random

walk fashion. Even as quantum chemical validations of this model have

failed, it remains to be most suitable as a first approximation method. So

far, the widely accepted notion has been that exciton migration in conju-

gated polymers occurs through a hopping mechanism across a collection of

spectroscopic units (chromophores).

Coherent Transport

When τrel � τtrans, the movement of the exciton would be governed by the

time-dependent Schrödinger equation with the corresponding Hamiltonian

describing the system.

i�
∂Ψ(x, t)

∂t
= ĤSΨ(x, t) (1.2)

The exciton travels through the molecular system as wave packet and such

motion would require a fixed phase relationship between excited state wave

function of different molecular species (Chromophores)2 participating in the

transport process. Therefore, it is called a coherent transfer and it is the

typical type of motion observed in closed quantum system where there are

no environmental factors that can causing dephasing of the system. The

density matrix is either formulated in local site basis (say, {|αi��s}) or in the

2Chromophores or the spectroscopic sub-units mean the same in our discussion here,
but the definition of the same in case of conjugated polymers is vague and could depend
various factors such as conformational dynamics that introduce conjugation breaks.
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excitonic basis (say, {|ni��s}) to theoretically describe exciton dynamics of

such systems.

Partial Coherent Transport

When τrel ≈ τtrans, it is not possible to strictly comment on the mechanism of

exciton transport. As there could be a possibility of strong coupling between

excitonic states within the molecule (intra molecular) while it could still

occur in an incoherent fashion across molecules. In general, it is possible

to have transport occurring in diverse ensembles through different types

of motion.Therefore the transport occuring in this regime is considered as,

‘Partially Coherent ’. In all these cases the exact definition of a spectro-

scopic unit or a chromophore remains vague and depend various other factors.

But, both in the case of coherent and partial coherent transport, ‘coherence’

enhances the process. In the following we discuss about the different types

of coherence and also present a brief argument to distinguish them with each

other.

1.2 What is Quantum coherence?

Coherence is a correlation between any two random variables, say (XY). It

is given by:

ρXY =
FXY√

FXXFY Y

(1.3)

Where FXX , FY Y are the expectation values of the probability densities of

X and Y. FXY =
�
xy∗fXY (x, y)dx dy is the expectation value of the joint

probability density fXY [8]. Quantum coherence could be defined as a corre-

lation of waves or wave-like entities at the mesoscopic level. Coherence in this

regime could also be classical in nature. It is important note that in chemical

dynamics some of the coherence effects could actually be described accurately

using classical mechanics. Experimentally it is quite difficult to distinguish
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between classical and quantum coherences. Particularly, this is the case

with electronic processes that involve certain non-adiabaticity. An elegant

argument was presented by Miller to distinguish such cases using semiclas-

sical methods in reference [9]. Further, these effects could be associated with

the states of the system or the process itself.

State Coherence

The quantum state is said to be pure if it can be represented by a density

matrix, ρ = |ψ��ψ|. Tr(ρ2) is a measure of purity of a state, it tells us on how

close is a given state to a pure state. It is independent of the basis {|ψi�}.
Coherences appear as off-diagonal elements in the density matrix and are

dependent on the basis chosen to construct the density matrix(ρ). For the

case excitonic systems that are of interest to us, two bases are quite useful

in describing the system. They are the localised site basis and the excitonic

basis or the energy basis which is the eigen basis of the given Hamiltonian.

As the coupling terms that appear as off-diagonal elements for the density

matrices in these two basis do not coincide, the coherence in each case are

different. This kind of coherence is described as ‘state coherence’ [10].

Process Coherence

Based on the extent to which an open system evolves unitarily with time,

a process could be described as coherent process or an incoherent process

[6, 10]. Unitary evolution dominates if the individual sites in a multichro-

mophoric system are strongly coupled to each other when compared to the

environment. In Förster’s mechanism the individual donor and acceptor

molecules are strongly coupled to their own dissipative environments than to

each other. The randomness introduced by the environment or any other

mode leads to loss of coherence, and dephases the system. Disorder in

various forms is the dominant origin for inhomogeneous spectral broadening

in molecular systems and could also lead to quantum mechanical motion in
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materials. Therefore, it is necessary to understand disorder effects to define

the nature of transport in molecular systems.

1.3 Excitons Surf along Conjugated Polymer

Chains

In an article with quite a rhetoric title, J.L. Brédas and Robert Silbey shared

their perspective on the implications of excitons being able to preserve their

phase over a long-range. As outlined by the authors, these results have

followed a series of investigations that were dedicated to the study multi-

chromphoric systems. It appears that chromophores in such systems commu-

nicate with each other through long range coulombic interactions and also

through a bath of fluctuating nuclear motions within their molecular archi-

tecture and the environment. The evidence for long-lived electronic quantum

coherence of excitation energy transfer in light harvesting complexes like

the Fenna-Mathew-Olson (FMO) complex have attracted a lot of attention.

This is due to the fact that coherence has been found to be preserved in a

highly disordered medium. Greg Scholes et al have reported similar quantum

coherent dynamics in the case of intrachain exciton migration in conju-

gated polymers at room temperature[11]. Using two-time anisotropy decay

(TTAD) experiments, MEH-PPV systems have been studied in two regimes:

(i) In solution phase, dissolved in good solvent and (ii) Aqueous suspensions

in water, where these polymers could aggregate to form nanoparticles. It was

observed that coherent transport was observed only in the case of solution

samples of the polymer, where the polymer molecules exist more freely as

open chains.

The striking difference in the photoresponse of the signals could be attributed

to excitation energy transfer being the dominant mechanism. Further, 2D

photon echo experiments confirmed the long-lived coherence in extended

chains of polymers rather than in polymer aggregates [11]. This indicates
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the presence of some structural features of these open polymeric chains that

induce correlations in the fluctuations of energy gaps. While it was surprising

that such features could induce coherences in highly disordered systems like

polymers, the true nature of such coherences if understood could have a wide

range of implications from building solar cells with higher quantum efficiency

to better quantum information storage devices. Therefore, it would be inter-

esting to study the exact nature of intra-chain exciton migration in linear

conjugated molecules as a function of their geometry to elucidate the mystery

behind the coherent excitation energy transfer.
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“We can only see a short distance ahead,

but we can see plenty there that needs to

be done.”

Sir Alan Turing

2
Literature Survey

In organic semiconductors, the delocalisation of π electrons is the key feature

that defines their optical and electrical properties. There exists a strong

relationship between their electronic structure and molecular geometry. For

example, conformational fluctuations and molecular vibrations modulate the

delocalisation of the π electrons. In condensed phase, these factors signifi-

cantly affect the properties of conjugates polymers. Recently, there has been

a lot interest to understand the role of torsional motion in exciton transport

in many conjugated polymers such as polyfluorenes, P3HT 1, MEH-PPV2

and other phenylene type polymers. [12–14]. Excitons in these systems are

low lying excited states of a spectroscopic unit in the polymer. The definition

of a chromophore or a spectroscopic unit in these kind of molecular systems

with extended conjugation has remained elusive [15].

1Poly(3-hexylthiophene-2,5-diyl)
2Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
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Definition of Chromophores

Spectroscopic units or chromophores are generally regarded as the irreducible

parts of a polymer, that can absorb and emit light [16, 17]. More often,

they have been defined arbitrarily, based on the minimum threshold in the

overlap of the π molecular orbitals. Computational studies have suggested

that there could alos be a possibility for super exchange occurring in exciton

transport along with the dipole-dipole coupling [18]. It was shown that the

chromophore distributions obtained from the assumption of random conju-

gation breaks can not explain the spectral properties of polymers in condensed

phase [14]. Therefore, the criterion of conjugation break does not sufficient

to define a chromophore or a spectral unit.

An alternative proposed by Beenken et al defined a chromophore as the

spatial extent of an exciton-polaron formed by the coupling of nuclear coordi-

nates with electronic degrees of freedom [15]. This was rejected by Barford

and Tozer in their work on the fully quantized Frenkel-Holstein model. They

claim that that the self localised solutions of Born-Oppenheimer Hamilto-

nians do not occur in the case of conjugated polymers. There has been an

attempt to provide a rigorous definition for the same by Barford et al in

their trilogy of papers on theory of linear optical transitions in conjugated

polymers [19–21]. They have defined a spectroscopic unit to be the average

spatial extent to which the exciton could get delocalised. As it is evident, the

definition of the fundamental unit that participates in the exciton transfer

process is crucial to explain the underlying mechanism and further studies

will have to provide a clear distinction of their definition and its validation.

In our study we neglect the possibility of long range dipole-dipole coupling

through space and thus conjugation would play a crucial role. This defines a

clear distinction between chromophores in our case. In the following section

we present a brief discussion of various theoretical models that have been

used to study exciton transport.
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Theoretical Models for Exciton Transport

In case of conjugated polymers, the movement of exciton from one site

to another could occur through super exchange via the chemical bonds and

through space by dipole-dipole coupling of any two chromophores. Many

models have been proposed to understand the optical properties of conju-

gated polymers under various limits. Within the Born-Oppenheimer approx-

imation, the Hamiltonian could separated into nuclear part and the electronic

part. In these models Born-Oppenheimer Hamiltonians parameterized for

particular nuclear coordinates, describing the state π-electrons are used.

These π-electron models include Hückel model, Su-Schrieffer-Heeger (SSH)

model, Peierls model and the Pariser-Parr-Pople(P-P-P) model. The Hückel

model describes a system of non-interacting π-electrons with a static geometry

and the PPP model describes a system interacting electrons

Ĥ =−
�

n=1,σ

tn

�
â†n,σân+1,σ + â†n+1,σân,σ

�

� �� �
Hückel Hamiltonian

+ U
�

n

(Nn,↑ −
1

2
)(Nn,↓ −

1

2
)

+
1

2

�

n�=m

Vn,m(Nn − 1)(Nm − 1) (2.1)

Where −tn

�
â†n,σân+1,σ + â†n+1,σân,σ

�
represents the transfer between spin

orbitals χn(r, σ) and χn+1(r, σ) of energy −tn. Here the UNn,↑Nn,↓ and

Vn,mNnNm represent the coulombic interaction between two electrons of the

same spatial orbital and the orbitals φn,φm respectively. The Schrieffer-

Heeger (SSH) model describes the dynamics of a system of non-interacting

electrons. We have the SSH hamiltonian to be defined as,

ĤSSH = Ĥe + Ĥn−n + Ĥe−n (2.2)
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where Ĥe is the Hückel Hamiltonian,

Ĥn−n =
�

n

�
P 2
n,x

2M
+

Kx

2
(un+1,x − un,x)

2 +Kxδr(un+1,x − un,x)

�
(2.3)

and

Ĥe−n = −
�

n,σ

αx (un+1,x − un,x)
�
â†n,σân+1,σ + â†n+1,σân,σ

�
(2.4)

Where un,x, Kx and αx are the projection parameters 3. In the static limit

the SSH model reduces to give the Peierls model where we have only the

contributions from the kinetic and elastic parts of the Hamiltonian.

ĤPeierls = Ĥkinetic +Helastic, (2.5)

Ĥkinetic =− 2
�

n

tnT̂n (2.6)

where T̂n =
1

2

�

σ

�
â†n,σân+1,σ + â†n+1,σân,σ

�
(2.7)

Ĥelastic =
1

4πtλ

�

n

Δ2
n + Γ

�

n

Δn (2.8)

Here tn is the hybridization integral, tn = t+Δn

2
where Δn = −2α(un+1−un).

α is the electron-phonon coupling parameter. The positive and negative

values of Δn corresponds to the reduction and extension of bond lengths.

Of all these the Frenkel-Holstein model has been widely used for to describe

the optical properties of conjugated polymers. As mentioned earlier, the

frenkel excitons could possibly delocalise over many monomers and it could

be described by the Frenkel model. The Holstein model gives the description

of the coupling between individual sites. Together the Frenkel-Holstein model

3ui is the displacement of the ith ion from its reference position and K is the spring
constant of the oscillator
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explains the motion of a delocalised exciton coupled to a normal mode [22].

The Frenkel-Holstein Hamiltonian is defined as:

ĤFH =
�

n

εnâ
†
nân +

�

i,j

Vij(â
†
i âj)

� �� �
Frenkel Hamiltonian

− t
�

n

Qnâ
†
nân +

K

2

�

n

Q2
n +

M

2

�

n

P 2
n

� �� �
Holstein Hamiltonian

Where εn is the excitation energy of the Frenkel exciton on the unit n and

ân, â
†
n are the fermionic creation, annihilation operators written in second

quantisation4. Vij is the exciton transfer integral, it accounts for both super

exchange and dipole-dipole coupling. t is the coupling parameter that quantifies

the strength of coupling between the electronic degrees of freedom and nuclear

co-ordinates (i.e. the exciton and the normal mode at a particular site). The

terms P 2
n and Q2

n terms represents the kinetic energy and elastic energy of the

harmonic oscillators (associated with the local normal modes) respectively.

K is the spring constant and M is the mass associated with the oscillator.

Barford et al have used the same model within the Born-Oppenheimer limit

for their study of linear conjugated polymers [19]. In these studies the local

normal modes where considered to be coupled to the excitons formed at the

site. In a similar way, local torsional modes being coupled to the electronics

degrees of freedom could be a possible area for exploring theoretical models

that could explain disorder in these systems.

Torsional dynamics

Torsional relaxation could lead to formation of relaxed excitons with a

binding energy of about 0.5eV [5]. This high binding energy compared to

inorganic semiconductors(few milli eV ) is due to two factors: (i) Weak

screening of charges or higher effective nuclear charge on the outermost

electrons. (ii) The presence of geometrical relaxation factors that yield

stable excitons. Experimental findings have confirmed the possibility of inter-

4For a pedagogic discussion on second quantization we refer the reader to the arguments
presented in Chapter 1 of Mahan, G. D. (2013); Many-particle physics.



14

conversion of electronic excitation energy into kinetic energy that lead to

planarization of conjugated molecules [12].This torsional relaxation process

was found to occur at a sub-100 fs timescale due to efficient redistribution of

the electronic excitation energy into torsional modes through non-adiabatic

transitions. These relaxation effects have been conjectured to interfere in

the exciton transport process. Yet, the efficient interconversion leading to

dumping energy into momentum states could dominate over the dampening

effects of the environment leading to coherent exciton transport. Beenken

et al have shown that torsional dynamics within the polymer backbone has

a significant influence on its spectral properties of phenylene type polymers.

Torsional broadening has a major contribution to the total inhomogeneous

broadening of the 11A → 11B transition in biphenyl and bithiophene molecule

[23, 24]. Torsional disorder could be the reason for such broadening possibly

due to the defects that break the conjugated chain into different spectroscopic

units and the dependency of transition energy on torsional angles.

As discussed earlier, though conjugation breaks can not completely decided

the extent of localisation of the exciton, they do play an important role.

While conventional ensemble measurements have been confined to single-

molecule spectroscopy and transient electronic absorption spectroscopy, recent

ultrafast spectroscopic techniques have been able to probe molecular events

occurring on femtosecond timescales. These studies have outlined the impor-

tance of conformational motion within the polymer chain and it has been

conjectured that torsional motion on such timescales could guide coherent

exciton transport with the polymeric chain in condensed phase systems [12,

13]. While the existing theories have to reconcile with many aspects relating

to exitonic delocalisation, exciton trapping, exciton-phonon correlations, and

exciton-exciton annihilation, we find that a key aspect of future studies

should be centered around torsional effects and their undeniable link with

excitonic motion.
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In this regard, we propose that a quantum dynamical study incorpo-

rating the aspects of coupling between local torsional modes and exctions

could provide valuable insights to guide further experimental studies. While

emerging evidence from experimental studies proves a definite role of torsional

effects in conjugated polymers, we find that there has been a lot of specu-

lation on the theoretical models that have been proposed to explain them.

Against this background, we find the need for a unified model that can treat

both static and dynamic torsional disorder effects on an equal footing. In the

following, chapters of this dissertation we present a new theoretical model

and provide some of our initial results.
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“Our imagination is stretched to the

utmost, not, as in fiction, to imagine

things which are not really there, but just

to comprehend those things which ‘are’

there.”

Richard Feynman 3
Theoretical Framework

In this chapter we describe the basic theoretical frame work that has been

adopted for studying the torsional effects on exciton migration rates in linear

conjugated polymer chains. To model these effects, we consider the coupling

between the electronic and torsional degrees of freedom of the polymer subunits.

For the proposed model, we derive the various realizations of the Hamiltonian

under different limits.

3.1 The Model

We consider a polymer chain with N (N ≥2) identical subunits that are

optically active two-level systems. It is assumed that there is a significant

torsional motion about the bonds that connect these subunits. To describe

the same, we use a symbolic example of Poly(p-phenylene) system. Each

benzene ring is considered as a subunit of the polymer chain or as a site

of the 1-Dimensional lattice formed by the polymer chain. It is assumed

that the benzene ring to be a rotor that can rotate about its molecular

axis. As mentioned earlier, we neglect the possibility of exciton transport

through space and only consider super exchange that occurs through bonds.
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Thus conjugation break in our case to a great extent defines the spatial

delocalisation of the exciton. The Hamiltonian of the system is considered to

be an operator in the Hilbert spaceHS = Hε⊗Hθ1⊗Hθ2⊗......⊗HθN , a tensor

product space of the localised exciton space and the ‘N’ rotor spaces.For

simplicity, we assumed that exciton energies(ε) on all sites are same and

moment of inertia(I) of all rotors are same.

ĤS =
N�

i=1

�σ+(i)σ−(i)−
�2

2I

N�

i=1

∂2

∂θ2i
+

N�

i,j=1

Uij +
N�

i,j=1

Vijσ+(i)σ−(j) (3.1)

Figure 3.1: Symbolic example of Poly(para-phenylene) systems

Analogous to the Heisenberg spin chain system, we define our Hamiltonian

using the operators σ+(i) and σ−(i) as the ladder operators that operate on

the ith site( i = 1, 2, · · · , N), written in the form of pauli spin operators

σx, σy and σz. Here | ↑� and | ↓� indicate the excited state and ground state

of the two level system respectively.1

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
and σz =

�
1 0

0 −1

�

σ+| ↓� = | ↑� and σ−| ↑� = | ↓�

1| ↑� and | ↓� are used in an analogous fashion and are not be confused with the nature
of spin of the excited electron. In our discussion we do not describe the nature of the
exciton that is formed i.e. whether it is a singlet or triplet exciton.
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where σ+ =
1

2
[σx + iσy] =

�
0 1

0 0

�
and σ− =

1

2
[σx − iσy] =

�
0 0

1 0

�

The first term corresponds to the Hamiltonian for localized excitons, the

second term corresponds to Hamiltonian for free rotors, third term corre-

sponds to coupling between rotors and the last term corresponds to the

coupling between localized excitons and the rotors (This is the term respon-

sible for exciton transfer). The coupling between any two sites is assumed to

depend only on the difference of rotor angles coupling these sites, further it is

assumed of the form Vij(θi−θj) = 2vij cos(θi−θj) and similarly Uij(θi−θj) =

2vij cos(θi − θj).

ĤS =�ωε

N�

i=1

σ+
i σ

−
i − �ωθ

N�

i=1

∂2

∂θ2i
+

N�

i=1

N�

j=1

i>j

2uij cos(2(θi − θj))

+
N�

i=1

N�

j=1

i�=j

2vij cos(θi − θj)σ
+
i σ

−
j (3.2)

where ωθ =
�
2I

and �ωε = �.

As excitation number operator N̂ex =
�N

i=1 σ+(i)σ−(i) commutes with the

Hamiltonian given in equation (3.2), excitation number is a good quantum

number. Additionally, we find that the Hamiltonian also commutes with the

total momentum operator P̂tot = −i�
�N

i
∂
∂θi

2.Thus, we restrict ourselves to

single excitation manifold. The orthonormal basis set spanning this space is

given by:

{|i� := | ↓, · · · , ↑, · · · , ↓�
↑ at ith position of a polymer chain of size N

| i ∈ {1, · · · , N}}

2We present these commutation relations in the Appendix-C
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An arbitrary wave function in this composite system HS at time t can be

written as,

|Ψ(θ1, θ2, .....θN , t)� =
N�

n=1

ψn(θ1, θ2, ....θN , t)|n�

|Ψ[Θ; t]� =
N�

n=1

ψn[Θ; t]|n� (3.3)

where Θ = (θ1, · · · , θN) ∈ [0, 2π]N and all ψi’s are periodic w.r.t each θi with

the period 2π. Plugging in |Ψ[Θ, t]� and ĤS from equation 3.2, we into the

Time-dependent Schrödinger equation as

i�
∂Ψ[Θ, t]�

∂t
=− �ωθ

N�

i=1

∂2

∂θ2i

N�

n=1

ψn[Θ, t]|n�+
N�

i,j=1

i>j

Uij

N�

n=1

ψn[Θ, t]|n�

+ �ωε

N�

i=1

σ+
i σ

−
i

N�

n=1

ψn[Θ, t]|n�+
N�

i,j=1

i�=j

Vijσ
+
i σ

−
j

N�

n=1

ψn[Θ, t]|n�

i�
∂Ψ[Θ, t]�

∂t
= − �ωθ

N�

i,n=1

∂2ψn[Θ, t]

∂θ2i
|n�+

N�

i,j=1

i>j

N�

n=1

Uijψn[Θ, t]|n�

+ �ωε

N�

n=1

ψn[Θ, t]
N�

i=1

σ+
i σ

−
i |n�+

N�

n=1

ψn[Θ, t]
N�

i,j=1

i�=j

Vijσ
+
i σ

−
j |n�

Therefore, the Time-dependent Schrödinger equation(TDSE) takes the form,

i�
∂|Ψ�
∂t

=− �ωθ

N�

i,n=1

∂2ψn[Θ, t]

∂θ2i
|n�+

N�

i,j=1

i>j

N�

n=1

Uijψn[Θ, t]|n�+ �ωε

N�

n=1

ψn[Θ, t]|n�

+
N�

n=1

N�

i=1
i�=n

Vinψi[Θ, t]|n� (3.4)
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Considering equation 3.4 , the matrix form of the TDSE would be,

i�
∂

∂t
ΨN×1 =


−�ωθ

N�

i=1

∂2

∂θ2i
+

N�

i,j=1

i>j

Uij + �ωε


 IN×NΨN×1 + Vin

N×NΨN×1

(3.5)

where

Vin
N×N =




0 V12 · · · V1N

V21 0 · · · V2N

...
...

. . .
...

VN1 VN2 · · · 0



and ΨN×1 =




ψ1[Θ, t]

ψ2[Θ, t]
...

ψn[Θ, t]




Therefore, the Hamiltonian matrix is given by:

HS =


−�ωθ

N�

i=1

∂2

∂θ2i
+

N�

i,j=1

i>j

Uij + �ωε


 IN×N + Vin

N×N . (3.6)

3.2 Various realizations of ĤS

Different forms of the potential matrix Vin represent model different physical

situations. First is a linear chain, where there are nearest neighbor inter-

actions. Second case is a nanohoop with circular geometry with a matrix

similar to that of a Huckel type matrix. Finally, a dense matrix that repre-

sents a closely packed geometry that could model molecular aggregate type of

interactions.The matrix Vin
N×N for the different arrangements of the polymer

chain such as linear, cyclic and closely packed geometries are illustrated in

the following table.
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Figure 3.2: Linear Geometry

Figure 3.3: Cyclic Geometry (Nano-hoop)

Figure 3.4: Close-packed case
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Models of Arrangements

Model Matrix Vin
N×N

Linear




0 V12 0 · · · · · · 0
V21 0 V23 · · · · · · 0

0 V32 0
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . V

(N−1)N

0 0 · · · · · · VN(N−1) 0




Cyclic




0 V12 0 · · · · · · V1N

V21 0 V23 · · · · · · 0

0 V32 0
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . V

N(N−1)

VN1 0 · · · · · · VN(N−1) 0




Close Packing




0 V12 V13 · · · V1N

V21 0 V23 · · · V2N

V31 V32 0 · · · V3N
...

...
...

. . .
...

VN1 VN2 VN3 · · · 0



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3.3 Fourier Transform of the Hamiltonian ĤS

The general form of the Hamiltonian presented in the earlier section generates

a set of coupled parabolic differential equations that do not seem to have an

exact solution.

i�
∂

∂t

N�

n=1

ψn[Θ, t]|n� =− �ωθ

N�

i=1

N�

n=1

∂2ψn[Θ, t]

∂θ2i� �� �
I

|n�+
N�

i,j=1

i>j

N�

n=1

Uijψn[Θ, t]

� �� �
II

|n�

+
N�

n=1

N�

i=1
i�=n

Vinψi[Θ, t]

� �� �
III

|n�+ �ωε

N�

n=1

ψn[Θ, t]

� �� �
IV

|n� (3.7)

Now using the fact that ψn[Θ; t]’s are periodic functions with respect to each

θi period 2π, we can use Fourier series representation for writing ψn’s as :

ψn[Θ; t] =
�

K∈ZN

ψ̃n[K; t]eiK·Θ,where K = (k1, · · · , kN) ∈ ZN (3.8)

The time-dependent Schrödinger on in the momentum space is as follows:

i�
∂

∂t

N�

n=1

ψ̃n[K
�
, t]|n� = −�ωθ

N�

n=1

N�

i=1

k
�
i

2
ψ̃n[K

�
, t]|n�+ �ωε

N�

n=1

ψ̃n[K
�
, t]|n�

+ uij

N�

i,j=1

i>j

N�

n=1

�
ψ̃n[K

�
(j−, i+), t] + ψ̃n[K

�
(j+, i−), t]

�
|n�

+ vij

N�

i=1

N�

n=1
i�=n

�
ψ̃i[K

�
(n−, i+), t] + ψ̃i[K

�
(n+, i−), t]

�
|n�

(3.9)

where all k
�
is ∈ Z i.e. k

�
i ∈ (−∞,∞) andK

�
(x+, y−) = (k

�
1, k

�
2, ...k

+
x

�
...k+

y

�
...k

�
N)
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“The laws of nature are constructed in such

a way as to make the universe as interesting

as possible.”

Freeman Dyson

4
Effect of Torsional Disorder on Exciton

Migration

In this chapter we derive various realizations of the general Hamiltonian

(ĤS) of the model proposed in the last chapter. At different limits of the

parameters : ωθ,ωε, Vij and Uij, the resulting Hamiltonian would correspond

to a different physical picture.

Static Picture

When the rotor frequency tends to zero (ωθ → 0) i.e. the rotors become rigid

as their moment of inertia tends to infinity(I → ∞), the rotors remain static.

Therefore, as there is no kinetic motion of the rotors we neglect the term

Uij that represents coupling between any two rotors. Such a Hamiltonian

would describe a static system with no torsional motion of rotors about their

molecular axis. This would be physical resemblance to the case of polymer

thin films. Additionally we impose the condition of nearest neighbor coupling

to understand the effects on exciton transport in linear polymeric chains. In

this limit the potential matrix VN×N would contain only the elements from



26

the superdiagonal and subdiagonal as the Hamiltonian ĤS from equation

(3.1 ) takes the form:

H = �ωε IN×N + VN×N . (4.1 a)

where �i|VN×N |j� = Vij [δi,j+1 + δi+1,j ] i, j > 0

Let |Ψ� be any arbitrary wave function of this system. This could be

written in the excitonic basis as |Ψ� =�N
n �n|Ψ�|n� and say �Ψ|n� = ψn then

we have |Ψ� =
�N

n ψn|n�. The same could be written as a column matrix

ΨN×1. Now the dynamics of such a system, whose description is given by the

Hamiltonian (Ĥ) is described by the time-dependent Schrödinger equation:

i�
∂

∂t
ΨN×1 = [�ωε IN×N + VN×N ]ΨN×1 (4.1 b)

Dynamic Picture

In the complete form, our general Hamiltonian models the case of dynamic

torsional disorder when the rotors have a finite frequencyωθ and there finite

coupling between the local torsional modes and the excitonic states. In our

current work, we are interested in understanding the dynamics of exciton

transport in linear conjugated molecules. Therefore we fix the potential

matrix to be

Vin =




0 V12 0 · · · · · · 0

V21 0 V23 · · · · · · 0

0 V32 0
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . V

(N−1)N

0 0 · · · · · · VN(N−1) 0






27

In section(4.3) we present some of our initial results for the dynamic disor-

dered case in linear conjugated polymers.

4.1 Ordered Chains

As a first step, in our attempt to understand the effect of torsional disorder on

exciton transport, we study the case of ordered chains where all the polymer

subunits or chromophores are completely aligned i.e. θ1 = · · · θN = θ.

Further we assume all the coupling factors v�ijs = vo. In this limit the Hamil-

tonian matrix would be a symmetric tridiagonal matrix.

H = �ωεIN×N
+ V (4.2)

In order to find the time-dependent wave function for this system, we first

find the eigenvalues and eigenvectors of this system and then carry out time

propagation by operating with the unitary time evolution operator.

Eigenvalues and Eigenvectors

The eigenvectors of the matrices H and V are the same and their eigenvalues

are related to each other by the relation α = �ωθ + voλ, where α and λ are

the eigenvalues of the H and V matrices respectively. Therefore, it is enough

to find the eigenvalues and eigenvectors of V to obtain the wave function of

the system. The matrix V is a symmetric tridiagonal matrix that 0 along

the diagonal. Such matrices in different variations have been well studied

in the literature and have an analytic solution for the eigenvalue equation

VΨN×1 = λΨN×1.
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Considering V− λI
N×N

= 0 we get,




−λ 1

1 −λ 1

1 −λ 1
. . . . . . . . .

. . . . . . . . .

1 −λ 1

1 −λ







φ1

φ2

...

φk

...

φN




= 0

Considering φo = φN+1 = 0




φo − λφ1 + φ2

φ1 − λφ2 + φ3

...

φk−1 − λφk + φk+1

...

φN−1 − λφN + φN+1




= 0 (4.3)

Thus we have system of second order linear difference equations of the

form φk−1 − λφk + φk+1, with boundary conditions φo = φN+1 = 0. The

solution to such a system of equations is of the form φk = xk, substituting

this in the equation of the second order linear difference equations we get,

φk−1 − λφk + φk+1 = 0 (4.4)

xk−1 − λxk + xk+1 = 0

xk

�
1

x
− λ+ x

�
= 0 (4.5)

The equation(4.5) has a trivial solution xk = 0 and the non-trivial solution

for x2 − λx+ 1 = 0. The roots for which are given by
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x± =
λ±

√
λ2 − 4

2
(4.6)

We get x+x− = 1 where, x+ = x and x− = 1
x
. The general solution is given

by φk = Axk
+ + Bxk

−. Considering the boundary conditions vo = 0, we get

φk = A(xk − x−k) where k = 0, 1, 2, 3 · · ·N + 1 (4.7)

For a non-trivial solution we needA �= 0 and by applying the second boundary

condition φN+1 = 0, we get

xN+1 − x−(N+1) = 0 i.e. x2(N+1) = 1.

Then we have, |x| = 1. Using the relations between x+ and x−, we get

|λ| ≤ |x|+ |x|−1 = 2 i.e. |λ| ≤ 2 (4.8)

Actually, equation(4.6) has two possible solutions λ = ±1 and λ �= ±1. For

the case λ = ±1 we do not have a nontrivial solution. In the later case,

λ �= ±1 we found that |λ| ≤ 2 and |x| = 1. Thus, we could consider x = eiθ

and we have x2(n+1) = e2i(N+1)θ = 1.

cos(2(N + 1)θ) = 1

θ =
mπ

(N + 1)
1 ≤ m ≤ N

Substituting x = eiθ in equations(4.5) and (4.6) we get λ = 2 cos(θ).

λm = 2 cos(
mπ

N + 1
) where 1 ≤ m ≤ N (4.9)
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Therefore, the eigenvalues of the Hamiltonian are

αm = �ωε + 2vo cos(
mπ

N + 1
) (4.10)

φ
(m)
k = 2iA sin(

kmπ

N + 1
) where m = 1, 2, ....N

The eigen vectors of V are |φk� = 2iA
�
sin( π

N+1
), sin( 2kπ

N+1
), ... sin(Nkπ

N+1
)
�
.

Considering the norm of |φk�

�φk�2 =�φk|φk� = 1

�φk�2 = − 4A2

N�

n

sin2(
nkπ

N + 1
)

∴ A2 =
1

4(−1)
�N

n sin2( nkπ
N+1

)
.

Let θ = kπ
N+1

, then

N�

m

sin2(
mkπ

N + 1
) =

N�

m

[1− cos 2mθ]

2

=
1

2

�
N −

N�

m

cos 2mθ

�
(4.11 a)

Using the euler formula, we get a summation of two geometric progressions

N�

m

cos(2mθ) =
N�

m

e2imθ + e−2imθ

2

=
1

2

�
e2iθ(1− e2iNθ)

1− e2iθ
+

e−2iθ(1− e−2iNθ)

1− e−2iθ

�

=
1

2

�
(e2iθ − 1)(1− e2iNθ) + (e−2iθ − 1)(1− e−2iNθ)

1− e2iθ − e−2iθ + 1

�

∴
N�

m

cos(2mθ) =
1

2

�
cos 2Nθ + cos 2θ − cos(2(N + 1)θ)− 1

1− cos 2θ

�
(4.11 b)
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Substituting equation(4.11(b)) in (4.11(a)), we simplify the summation
�N

m sin2(mkπ
N+1

).

N�

m

sin2(
mkπ

N + 1
) =

1

2

�
N − 1

2

�
cos 2Nθ − cos(2(N + 1)θ)

1− cos 2θ
− 1

��

=
N

2
+

1

4
+

cos(2(N + 1)θ)− cos 2Nθ

4(1− cos 2θ)

=
N

2
+

1

4
+

cos(2mkπ)− cos 2mNkπ
N+1

4(1− cos 2mNkπ
N+1

)

=
N

2
+

1

4
+

1− cos 2mNkπ
N+1

4(1− cos 2mNkπ
N+1

)

=
N

2
+

1

4
+

1

4
∴

N�

m

sin2(
mkπ

N + 1
) =

N + 1

2
(4.12)

and A =
1

i
�

2(N + 1)

Therefore the normalized eigenvectors are

|φk� =
�

2

N + 1




sin( kπ
N+1

)

sin( 2kπ
N+1

)
...

sin(Nkπ
N+1

)




(4.13)

Time Propagation

Considering that our Hamiltonian is independent of time. The time evolution

operator U(t, to) maps the initial state of the system at to to the state of the

system at t. It works as |Ψ(t)� = U(t, to)|Ψ(to)�. If Ĥ is hermitian, then

U(t, to) is a unitary operator and U could be defined as

U(t, to) = e−i Ĥ(t−to)
� (4.14)

|Ψ(t)� = e−i Ĥ(t−to)
� |Ψ(to)�
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The initial state of the wave function |Ψ(0)� could be written as

|Ψ(0)� =
N�

k

�φk|Ψ(0)�|φk� (4.15)

Therefore, solution to the time-dependent Schrodinger equation as a coherent

superposition could be written as

|Ψ(t)� =
N�

k

e−i Ĥ� t�φk|Ψ(0)� |φk�

=
N�

k

�φk|Ψ(0)� e− 1
� iαkt|φk�

The eigenket |φk� could be expanded in terms of site basis {|n��s} as

|φk� =
�

2

N + 1

N�

n

sin(
nkπ

N + 1
)|n� (4.16)

Transition Probability |U
N,1
(τ)|2

We wish to compute |1� to |N� transition probability to understand the

dynamics of exciton migration in the ordered polymeric chains where all

the chromophores are completely aligned. For this we consider that a frank

condon type excitation generates the exciton at site |1�. The transition proba-

bility |U
N,1

(t)|2 tell us how the probability of finding exciton at |N� evolves
with time given that initial excitation was created at site |1�.

|U
N,1

(τ)|2 = |�N |e−iĤτ |1�|2
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Here we consider t as dimensionless time, τ = V t
� . Both |N� and |1� can be

expanded in the eigen basis as follows:

|N� =
N�

m

�φm|N� |φi�

|1� =
N�

n

�φn|1� |φj��N |e−iĤτ |1�

=
N�

m

N�

n

�φm|N�∗�φn|1��φm|e−iĤτ |φn�

=
N�

m

N�

n

�φm|N�∗�φn|1��φm|e−iEnτ |φn�

=
N�

m

N�

n

sin(
mπN

N + 1
) sin(

nπ

N + 1
)e−iEnτ δm,n

∴ �N |e−iĤτ |1� =
N�

m

sin(
mπN

N + 1
) sin(

mπ

N + 1
)e−iEmτ (4.17)

Let am = 2
N+1

sin( mπ
N+1

) sin(mNπ
N+1

) then, UN,1(τ) =
�N

m ame
−iEmτ . The transition

probability would be:

|UN,1(τ)|2 = |
N�

m

ame
−iEmτ |2

=
N�

i

|ai|2 +
X�

i�=j

aman
∗ e−i (Em−En)τ

=
N�

m

am
2 + 2

N�

m>n

aman
∗ cos((Em − En)τ)

∴ |UN,1(τ)|2 =
N�

m

am
2 + 2

N�

m>n

aman cos(Em − En)t) (4.18)
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Using the expression (4.18), we find the transition probability for different

sizes of the system to evolve with time as follows1 2 :

Figure 4.1: Transition Probability plots in case of Ordered Chains.

In these representative plots of end-to-end transition probability, we clearly

observe an oscillatory behavior and it is wilder in case of higher values of N .

As N increases the contributions from various eigenvalues to phase factor

also increase and this could be the reason for wilder oscillations in case of

longer ordered chains.

1To perform these calculations and plot the data, we have used the numpy and
matplotlib libraries in python.

2We only present representative examples here and provide the python codes employed
for this in the appendix-C.
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Time-averaged Transition Probability

The time average transition probability would be

PN = lim
T→∞

1

T

� T

0

|UN,1(τ)|2dτ

= lim
T→∞

1

T

�
N�

m

a2mT + 2
N�

m>n

aman
sin[(Em − En)T ]

(Em − En)

�

= lim
T→∞

�
N�

m

a2m + 2
N�

m>n

aman
sin[(Em − En)T ]

(Em − En)T

�

=
N�

m

a2m + 2
N�

m>n

aman lim
T→∞

sin[(Em − En)T ]

(Em − En)T
as lim

x→∞
sin(kx)

kx
= 0

=
4

(N + 1)2

N�

m

sin2(
mπ

N + 1
) sin2(

mNπ

N + 1
) let θ =

π

N + 1

=
4

(N + 1)2

N�

m

[1− cos 2mθ]

2

[1− cos 2mNθ]

2

=
1

(N + 1)2

N�

m

[1− cos 2mNθ − cos 2mθ + cos 2mθ cos 2mNθ]

=
1

(N + 1)2

�
N�

m

1−
N�

m

cos 2mNθ −
N�

m

cos 2mθ +
N�

m

cos 2mθ cos 2mNθ

�

as
N�

k

cos(kx) = −1 when x =
π

N + 1

=
1

(N + 1)2

�
N − (−1)− (−1) +

N�

m

cos 2mθ cos 2mNθ

�

using the identity cos(x) cos(y) =
1

2
[cos(x− y) + cos(x+ y)]

=
1

(N + 1)2

�
N + 2 +

1

2

N�

m

[cos(2m(N − 1)θ) + cos(2m(N + 1)θ)]

�

=
1

(N + 1)2

�
N + 2 +

1

2

N�

m

cos(2m(N − 1)θ) +
1

2

N�

m

cos(2m(N + 1)θ)

�

=
1

(N + 1)2

�
N +

3

2
+

1

2

N�

m

cos

�
2m(N + 1)

π

(N + 1)

��
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Figure 4.2: Time-Averaged Transition Probability as a function of chain
length of the polymer.

PN =
1

(N + 1)2

�
N +

3

2
+

1

2

N�

m

cos (2mπ)

�

=
1

(N + 1)2

�
N +

3

2
+

N

2

�

=
1

(N + 1)2

�
3

2
(N + 1)

�

∴ PN =
3

2(N + 1)
(4.19)

Thus, the time average transition probability limT→∞
1
T

� T

0
|UN,1(τ)|2dτ

is given by PN = 3
2(N+1)

.

Defects in ordered chains

The Hamiltonian presented in this section describe the over simplified cases of

single impurities or defects being present in a perfectly ordered chain. In spite

of their simplicity, these Hamiltonians provide an qualitative understanding

on the impact of a single disordered site on exciton transport. We treat

these defects as a first order perturbation in an ordered chain and employ
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numerical calculations to find the transition probability and time averaged

transition probability. The general form of the Hamiltonian would be:

H =Ho +H1

Ho = �ωεIN×N
+ V

Where H1 is the first order perturbation in the system. Here we could two

different types, chemical and torsional. A chemical defect in this could be

defined as a site with a higher site energy within the order chain and torsional

defect could be defined as misalignment of the rotor or at between any two

rotors within the chain. While chemical defects present a case of diagonal

disorder, torsional defects are cases of off-diagonal disorder.

Chemical Defects

Here we consider a case where the chromophore at some mth has higher

site energy than the rest of the chromophores, say εn = �ωε + �. This is

analogous to a situation when a polymer chain has chemical impurity due

to the synthetic process that is adopted. In this case the perturbation H1 is

given by:

H1 =




0
. . .

�
. . .

0




(4.20)

We present representative example of transition probability plot against

dimensionless time τ at the end of this section. 3.

3For this we randomly sample � over a uniform distribution ranging from 1 to 10 times
the site energy elsewhere in the chain. Further we carry out configurational averaging as
discussed in section(4.2).
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Torsional Defects

In case of torsional defects, there are two possibilities: (i)One of the rotors in

the ordered chains in misaligned and rest of the entire chain remains intact

in the same plain.(ii)The torsional defect could also manifest in the form

of a conjugation break between any two sites separating it into two ordered

chains.

Case(i):

When the (m− 1)th and (m + 1)th chromophores are not in the same plane

as the mth chromophore. (i.e.)

θ1 = θ2..... = θm−1 = α and θm+1 = θm+2..... = θN = β.

In the case the H1 turns out be as follows:

H1 =




0
. . .

0 0 −1 + cos(α− θm)

−1 + cos(α− θm) 0 −1 + cos(β − θm)

−1 + cos(β − θm) 0 0
. . .

0




(4.21)

In this case the transition probability and time-averaged transition proba-

bility are as follows:

(graphs and table)

Case(ii):

When the mth and (m+ 1)th chromophores are not in the same plane. (i.e.)

θ1 = θ2..... = θm = α and θm+1 = θm+2..... = θN = β.
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In the case the H1 turns out be as follows:

H1 =




0
. . .

0 0 −1 + cos(α− β)

−1 + cos(α− β) 0 0
. . .

0




(4.22)

In this case the transition probability and time-averaged transition proba-

bility are as follows:

Figure 4.3: Transition Probability plots of ordered chains with defects.
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4.2 Static Disorder

In a realistic setting an important factor that determines the optical properties

of conjugated polymers is static disorder. The origin of static disorder could

be both energetic and structural in nature. As discussed in the previous

section, chemical defects are energetic defects that arise due to the synthetic

scheme. Torsional defects arise due to strain in the molecule and are struc-

tural in nature. These ideas of disorder have been of great interest in

condensed matter systems, as disorder beyond a threshold value could induce

interesting phase transitions in material. In the following section we briefly

discuss these ideas of disorder and configurational averaging.

Disorder Averaging

In his seminal paper, “Absence of Diffusion in Certain Random Lattices”,

P.W. Anderson suggested that the localization of charge carriers due to

increasing disorder in the system was responsible for a phase transition from

a conductor to an insulator. This sudden fall in the conductivity of a material

as the disorder increases beyond a certain threshold has been attributed to

the localization of charge carriers. It is now understood to be an interference

phenomena, where the wave amplitudes associated with various tunneling

paths cancel out each other [25]. A similar picture could be used to describe

transport in the case of molecular systems, where the charge carriers or

excitons could get scattered due to presence of defects. Here the resultant

inhomogeneous broadening could described as a configurational average, an

energy spectrum averaged over different random arrangements of the system

[6]. For a sample volume V that contains different possible arrangements of

system (say V number of sample arrangements) parameterised by a struc-

tural parameter θi that varies with disorder, the configurational average for
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any property f(ω, θ) is given by

F (ω) =
1

V

�

A∈V
f(ω, θi) (4.23)

For a large number of realisations of the system, the summation in the config-

urational average could be replaced by an integrand .

F (ω) =
1

V

�

V
F(θ)f(ω, θi)∂θ (4.24 a)

where F(θ) is the normalized distribution function, given by

F(θ) =
1

V

�

A∈V

�

j

δ(θA − θj) (4.24 b)

The extent of inhomogeneous broadening of the spectrum is dependent on

the distribution of microscopic parameters. In case of disordered systems it

becomes necessary to do a configurational averaging to account for various

effects introduced due to the ergodicity of the microscopic parameters. It

provides a more realistic picture in the description of molecular systems that

are inherently disordered. In the following sections we proceed to calculate

the time-averaged transition probability using disorder averaging.

Configurational Averaging

We consider ĤS from equation 4.1(a) as function of Θ = {θ1, θ2 · · · θN}.

ĤS[Θ] = V
N−1�

i

cos(θi − θi+1) [ |i��i+ 1|+ |i+ 1��i| ] (4.25)

Then consider that the Hamiltonian ĤS has the energy spectrum

ĤS[Θ] |φn[Θ]� = εn[Θ] |φn[Θ]� where n = 1, 2, 3...N
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We consider that the eigenvectors {|φn[Θ]��s} and eigenvalues {εn[Θ]�s} are

functions of Θ and expand �N | and |1� in terms of eigenvectors. Then the

transition probability 4 is given by

|UN,1(τ)|2 =|�N |e−iĤ[Θ]τ |1�|2

=
N�

m

N�

n

�1|φm[Θ]��φm[Θ]|N��N |φn[Θ]��φn[Θ]|1�e−i(εm[Θ]−εn[Θ])τ

Therefore the time average transition probability(PN [Θ]) is given by

lim
T→∞

1

T

� T

0

|UN,1[Θ, τ ]|2dτ = lim
T→∞

1

T

� T

0

N�

m

N�

n

�1|φm[Θ]��φm[Θ]|N�

�N |φn[Θ]��φn[Θ]|1�e−i(εm[Θ]−εn[Θ])τ

PN =
N�

m

N�

n

�1|φm[Θ]��φm[Θ]|N��N |φn[Θ]��φn[Θ]|1�

lim
T→∞

1

T

� T

0

e−i(εm[Θ]−εn[Θ])τdτ

∴ PN =
N�

m
εm[Θ]=εn[Θ]

|�1|φm[Θ]�|2|�φm[Θ]|N�|2 (4.26)

From equation 4.24 (a), we know that disorder averaged time-averaged transition

probability is given by

� PN [Θ] �average =
�

Θ∈[0,2π]N
P [Θ]

�
lim
T→∞

1

T

� T

0

| UN,1[Θ, τ ] |2dτ
�

dNΘ

(4.27)

4Where τ is the dimensionaless time that we have previously defined.
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Similarly, the disorder averaged transition probability is given by

� UN,1[Θ, τ ] |2 �average =
�

Θ∈[0,2π]N

P [Θ]
�
|�N |e−iĤ[Θ]τ |1�|2

�
dNΘ (4.28)

Using the expressions 4.27 and 4.28 we have numerically calculated5 the

Figure 4.4: Time-averaged transition probability plotted as a function of N
for polymer chains with static torsional disorder.

disorder averages of transition probability and time-averaged transition proba-

bility. Here we also present the scaling behavior of the time-averaged transition

probability with respect to growing chain size. We find that the time

averaged transition probability for any given value of N is higher in case

of the ordered chains when compared to the static disordered case. We

also observe a trend that in case of single defects in ordered chains, the

impact of case(ii) torsional defects is less, when compared to case(i) torsional

defects. Though chemical defects preserve coherence, they drastically reduce

the time-averaged transition probability value for an exciton moving from |1�
to |N�.We find that time averaged transition probability decays as a power

law with an exponent of -1.68 i.e. ie decays faster than the completely disor-

5We have performed configurational averaging over a sample space with 1,00,000
samples generated by drawing randomly from a uniform distribution.
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Figure 4.5: Scaling behavior of Time-averaged transition probability

dered case. In the following section, we consider the case of dynamic torsional

disorder.
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Figure 4.6: Representative examples of Transition probability as function of
dimensionless time τ for polymer chains with static torsional disorder
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4.3 Dynamic Torsional Disorder

To model the case dynamic disorder we begin by considering the complete

Hamiltonian of our model. We found it difficult to find an analytic solution

for the system defined by equation 3.5, therefore we have resorted to numerical

methods to solve the same. As a first step, we have Fourier transformed the

time-dependent Schrödinger wave equation and obtained the equation (3.9).

In the equation (3.9), we find that there infinitely many momentum states

and to make the problem tractable, we truncate the momentum states K

from ZN to a finite set [−M,M ]N . By truncating the momentum space we

are indirectly discretising the torsional angles (θi ∈ [0, 2π]) to 2M+1 equally

spaced states. Even though we have restricted the number of momentum

states to a finite value the dimensionality of truncated Hamiltonian matrix

grows rapidly as an exponential N(2M + 1)N . This follows from the fact

that the entanglement of such one-dimensional systems grows rapidly. As

mentioned in the initial discussion of this chapter we fix the potential matrix

to model linear chains with nearest neighbor coupling.

We chose to employ the exact diagonalisation using Lanczos algorithm to

solve the problem numerically. These methods come with their own limita-

tions, as the maximum size of a non-singular matrix that can be diagonalized

using the commonly available quad core CPUs is limited to the order of a

few thousands. While the exact dimensionality of the matrix that could be

diagonalised depends on its sparseness, we could achieve diagonalisation of

reasonably sparse matrices upto the size (15,000×15,000) 6. The implemen-

tation of the numerical scheme in python is presented in appendix-C of this

thesis. In the following section we outline the time propagation scheme that

we have considered for numerical solution.

6All the computations for these calculations where run on a Desktop with Intel Core
i5-4590 CPU with 7.7 GB of available memory.
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Time propagation

Suppose on diagonalising the X = N × (2M +1)N dimensional Hamiltonian

matrix in the fourier space, we get X eigen vectors, say {|φi��s}. The expres-
sions for the initial state in the site basis before and after fourier transform

are given by

|ψ(0)� =
N�

n

ψn|n�

|ψ̃(0)� =
N�

n

+M�

−M

N· · ·
+M�

−M

ψ̃n[K] |n� ⊗ |k1� ⊗ |k2�...⊗ |kN�

(4.29)

where K = k1, k2, ..kN

The an arbitrary eigen vector |φi� in the fourier transformed eigen basis is

given by:

|φi� =
N�

n

+M�

−M

N· · ·
+M�

−M

c
(i)
n,k1,k2...kn

|n� ⊗ |k1� ⊗ |k2�...⊗ |kN� (4.30)

�φi| =
N�

m

+M�

−M

N· · ·
+M�

−M

c
(i)∗

m,k
�
1,k

�
2...k

�
N

�m|⊗ �k�
1|⊗ �k�

2|...⊗ �k�
N |

The initial state as a coherent superposition of eigenkets is given as :

|ψ̃(0)� =
N�

i

�φi|ψ̃(0)� |φi�

=
X�

i

N�

n

+M�

−M

N· · ·
+M�

−M

c
(i)∗

n,k1,k2...kn
ψ̃n[K] |φi�

The wave function at any time t |ψ̃(t)� is given by

|ψ̃(t)� =
X�

i

N�

n

+M�

−M

N· · ·
+M�

−M

c
(i)∗

n,k1,k2...kn
ψ̃n[K] e−iEit |φi� (4.31)
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We consider that initially all the rotors are in their zero momentum state i.e

|k1 = 0� ⊗ .....|kN = 0�. Further, we create a Franck-Condon type excitation

at site |1�. Then given that such an excitation is created at |1� we wish to

find the transition probability |UN,1(τ)|2.

|UN,1(τ)|2 =
�

.....
�

Nsummations

�N |⊗ �k1|⊗ .....�kN | eiHt |1� ⊗ |k1 = 0� ⊗ .....|kN = 0�

(4.32)

Here we present a few representative examples from the exact diagonalisation

studies of the complete Hamiltonian. From our initial results, we hypothesis

that exciton migration occurs in a coherent fashion in the presence of dynamic

torsional disorder in an isolated molecule.
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Figure 4.7: Transition probability plots for N=2 with different degrees of
freedom at each site.
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Figure 4.8: Representative examples of Transition probability as function of
dimensionless time τ for polymer chains with dynamic torsional disorder.
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“Somewhere, something incredible is

waiting to be known.”

Carl Sagan

5
Conclusions and Future Work

As a part of this dissertation work, we have proposed a general model to study

the torsional effects on exciton transport in π-conjugated polymers. Using

the model, we have studied the specific case of linear conjugated polymers

with nearest neighbour coupling in various limits. At various limits of the

parameters: ωθ,ωε and Vij, we have computed the end-to-end transition

probability and its time-averaged value as a means to study the dynamics of

the system. From our results, we find a trend in the scaling behavior time-

averaged transition probability with respect to the size of the system across

various limits. Based on these studies, we propose a conjecture that, the time-

averaged transition probability for end-to-end exciton migration is always

higher in ordered chains when compared to disordered chains. Comparing

the different type of defects, it is evident that the nature and extent of

disorder determine the type of transport in the isolated molecules. Finally,

we have numerically solved the complete Hamiltonian proposed our model

using exact diagonalisation method.
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5.1 Future Work

In our work so far, we have limited ourselves to the simple case of nearest

neighbor interactions. There are a wide range other possibilities that arise

from the general Hamiltonian proposed in chapter 3. From cyclic systems to

molecular aggregates many other systems could be studied using the proposed

model. Many cases such as frustrated interactions and the cases modeling

selective rotor coupling are yet to be explored. These present an opportunity

to further extend this study on dynamics of exciton migration in conjugated

polymers using this model.

While we have resorted to numerical methods to a great extent in our

work and we speculate that there could be a possibile analytic solution for

the case of static torsional disorder. An analytic solution, if derived could

provide a more rigorous proof to the conjecture that we have proposed on

time averaged transition probability for the ordered chains being greater

than any case with disorder. The time-dependent Schrödinger equation with

the complete Hamiltonian of our model generates a set of coupled partial

differential equations that present a challenging task to find a solution in the

closed form and one would have to check for the integrability of the model

to initiate such a study. In another direction, we have also initiated the

analytic calculations for the case of defects in ordered chains using Green’s

functions methods [26] and we have achieved considerable amount of success

in the process. Even, the numerical methods that we have used suffers from

exponential growth of entanglement in our system. In literature, the class of

Renormalization group methods [27] have been proposed to find a tractable

solution for studying larger sizes of entangled systems, similar to the one

that we encounter in our model. Of all these renormalization group methods,

density matrix renormalization group(DMRG) [28] methods have been quite

successful for systems with linear growth of Von Neumann entropy [29]. At

the time of submission of this dissertation, we are in the process of devel-
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oping a time-dependent DMRG scheme for our model. The application of

the DMRG algorithm using the Matrix Product states ansatz has been our

primary interest all through the last leg of this dissertation work and we hope

to arrive to a conclusion on these line very soon. We would like to continue

this study further using these numerical methods to provide insights on effects

of dynamic torsional disorder in linear conjugated polymers.
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A
Fourier Transform of the Hamiltonian

Considering the time-dependent Schrödinger equation, we find the Fourier

transform of this equation.

i�
∂

∂t

N�

n=1

ψn[Θ, t]|n� =− �ωθ

N�

i=1

N�

n=1

∂2ψn[Θ, t]

∂θ2i� �� �
I

|n�+
N�

i,j=1

i>j

N�

n=1

Uijψn[Θ, t]

� �� �
II

|n�

+
N�

n=1

N�

i=1
i�=n

Vinψi[Θ, t]

� �� �
III

|n�+ �ωε

N�

n=1

ψn[Θ, t]

� �� �
IV

|n� (3.7)
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Term I

Fourier transform of −�ωθ

N�

i,n

∂2ψn[Θ, t]

∂θ2i
is given by

− �ωθ

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

i,n

∂2

∂θ2i




+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm




=− �ωθ

(2π)N

N�

n,i

� 2π

0

dΘe−i
�N

m=1 k
�
mθm




+∞�

−∞
N sums

ψ̃n[K, t]
∂2

∂θ2i
ei
�N

m=1 kmθm




=− �ωθ

(2π)N

N�

n,i

� 2π

0

dΘe−i
�N

m=1 k
�
mθm




+∞�

−∞
N sums

ψ̃n[K, t]k2
i e

i
�N

m=1 kmθm




=− �ωθ

N�

n,i




+∞�

−∞
N sums

k2
i ψ̃n[K, t]

1

(2π)N

� 2π

0

dΘei
�N

m=1(km−k
�
m)θm




We know that δ(x− x
�
) = 1

2π

� 2π

0
dtei(x−x

�
)t

= −�ωθ

N�

n,i




+∞�

−∞
N sums

k2
i ψ̃n[K, t]δ(k1 − k

�
1) · · · δ(kN − k

�
N)




We get the Fourier transform of Term I to be

−�ωθ

N�

n=1

N�

i=1

k
�
i

2
(A 1)
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Term II

Fourier transform of
N�

i,j=1

i>j

N�

n=1

Uijψn[Θ, t] is given by

1

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

i,j=1

i>j

N�

n=1

Uij




+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm




=
1

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

i,j=1

i>j

N�

n=1

uij

�
ei(θi−θj) + e−i(θi−θj)

�



+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm




=
N�

i,j=1

i>j

N�

n=1

uij

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm
�
ei(θi−θj) + e−i(θi−θj)

�




+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm




=
N�

i,j=1

i>j

N�

n=1

uij

(2π)N

� 2π

0

dΘ




+∞�

−∞
N sums

ψ̃n[K, t]e−i
�N

m=1 k
�
mθm
�
ei(θi−θj) + e−i(θi−θj)

�
ei
�N

m=1 kmθm




=
N�

i,j=1

i>j

N�

n=1

uij

(2π)N

� 2π

0

dΘ




+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1(km−k
�
m)θm

�
ei(θi−θj) + e−i(θi−θj)

�



=
N�

i,j=1

i>j

N�

n=1

uij

(2π)N

� 2π

0

dΘ




+∞�

−∞
N sums

ψ̃n[K, t]

�
e
i
��N

m=1(km−k
�
m)θm

�
+(θi−θj) + e

i
��N

m=1(km−k
�
m)θm

�
−(θi−θj)

��
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=uij

N�

i,j=1

i>j

N�

n=1




+∞�

−∞
N sums

ψ̃n[K, t]
1

(2π)N

� 2π

0

dΘ

�
ei(k1−k

�
1)θ1 · · · ei(kN−k

�
N )θN ei(θi−θj) + ei(k1−k

�
1)θ1 · · · ei(kN−k

�
N )θN e−i(θi−θj)

��

Let δ+i =
1

2π

� 2π

0

dθie
iθiei(ki−k

�
i)θi and δ−j = 1

2π

� 2π

0
dθje

−iθjei(kj−k
�
j)θj .

Also we condsider K
�
(x+, y−) = (k

�
1, k

�
2, ...k

+
x

�
...k+

y

�
...k

�
N).

=uij

N�

i,j=1

i>j

N�

n=1

+∞�

−∞
N sums

ψ̃n[K, t]
�
δ1...δ

+
i ...δ

−
j ....δN + δ1....δ

−
i ...δ

+
j ...δN

�

We get the Fourier transform of the Term II

uij

N�

i,j=1

i>j

N�

n=1

�
ψ̃n[K

�
(i+, j−), t] + ψ̃n[K

�
(j+, i−), t]

�
(A 2)

Term III

=
1

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

i=1

N�

n=1
i�=n

Vij




+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm




=
1

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

i=1

N�

n=1
i�=n

Vo

2

�
ei(θi−θn) + e−i(θi−θn)

�



+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm



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Similar to the simplification of in the previous term, we get the Fourier

transform of the term III

uij

N�

i=1

N�

n=1
i�=n

�
ψ̃n[K

�
(i+, n−), t] + ψ̃n[K

�
(n+, i−), t]

�
(A 3)

Term IV

=
1

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm�ωε

N�

n=1

ψn[Θ, t]

=
�ωε

(2π)N

� 2π

0

dΘe−i
�N

m=1 k
�
mθm

N�

n=1

+∞�

−∞
N sums

ψ̃n[K, t]ei
�N

m=1 kmθm

=
�ωε

(2π)N

N�

n=1

+∞�

−∞
N sums

� 2π

0

dΘψ̃n[K, t]ei
�N

m=1(km−k
�
m)θm

=�ωε

N�

n=1

+∞�

−∞
N sums

ψ̃n[K, t]

�
1

2π

� 2π

0

dθ1e
i(k1−k

�
1)θ1 . . .

1

2π

� 2π

0

dΘei(kN−k
�
N )θN

�

=�ωε

N�

n=1

+∞�

−∞
N sums

ψ̃n[K, t]δ1δ2.......δN

We get the Fourier transform of Term IV

�ωε

N�

n=1

ψ̃n[K
�
, t]
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Therefore, the time-dependent Schrödinger on in the momentum space is as

follows:

i�
∂

∂t

N�

n=1

ψ̃n[K
�
, t]|n� =− �ωθ

N�

n=1

N�

i=1

�
k

�
i

2
ψ̃n[K

�
, t]
�
|n�

+ uij

N�

i,j=1

i>j

N�

n=1

�
ψ̃n[K

�
(i+, j−), t] + ψ̃n[K

�
(j+, i−), t]

�
|n�

+ vij

N�

i=1

N�

n=1
i�=n

�
ψ̃i(K

�
[i+, n−), t] + ψ̃i[K

�
(n+, i−), t]

�
|n�

+ �ωε

N�

n=1

ψ̃n[K
�
, t]|n�

where all k
�
is ∈ Z i.e. k

�
i ∈ (−∞,∞)
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B
Python Codes

In our work we have extensively used Python as a tool to carry out our

numerical calculations. Programming in python presents itself as an ideal

tool to any theoretician with its versatile data structures and extensively

supported in-built library function from modules such as numpy, scipy, pandas

and matplotlib. As a part of the appendix chapter we present various

functions and programs that have been written in Python for this disser-

tation work.

B.1 Ordered chain calculation.py

1 #!/ usr / bin /env python3

2 # −∗− coding : ut f−8 −∗−
3 ”””

4 Created on Sun Mar 24 22 : 06 : 18 2019

5

6 @author : Vijay

7 ”””

8

9 import numpy as np
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10 import matp lo t l i b . pyplot as p l t

11 import pandas as pd

12 import time as t imer

13 de f range1 (n ) :

14 r e turn range (1 , n+1)

15 de f E(k , se ,V, n ) :

16 r e turn se ∗(n−2) + V∗np . cos ( ( k∗np . p i )/ ( n+1))

17 de f c t ( t , se ,V, n ) :

18 s i t e s = range1 (n+1)

19 c = 0

20 f o r k in s i t e s :

21 c += ( (2/ ( n+1))∗np . s i n ( ( k∗np . p i )/ ( n+1))

22 ∗ np . s i n ( ( k∗n∗np . p i )/ ( n+1))

23 ∗ np . exp(−1 j ∗E(k , se ,V, n)∗ t ) )
24 r e turn c

25 de f s t ( t , se ,V, n ) :

26 s i t e s = range1 (n+1)

27 s = 0

28 f o r k in s i t e s :

29 s += ( (2/ ( n+1))∗(np . s i n ( ( k∗np . p i )/ ( n+1)))∗∗2
30 ∗ np . exp(−1 j ∗E(k , se ,V, n)∗ t ) )
31 r e turn s

32 de f c a l c u l a t i o n ( t ime range , t ime s teps , n ,V, se ) :

33 s t a r t = timer . time ( )

34 temp dict1= d i c t ( )

35 temp dict2= d i c t ( )

36 time= np . l i n s p a c e (0 , t ime range , t ime s t ep s )

37 f o r t in time :

38 va l1 = abs ( c t ( t , se ,V, n ))∗∗2
39 temp dict1 [ t ]= val1

40 f o r t in time :

41 va l2 = abs ( s t ( t , se ,V, n ))∗∗2
42 temp dict2 [ t ]= val2

43

44 l i s t s 1 = sor t ed ( temp dict1 . i tems ( ) )

45 # sor t ed by key , re turn a l i s t o f tup l e

46 x1 , y1 = z ip (∗ l i s t s 1 )

47 # unpack a l i s t o f p a i r s i n to two tup l e s
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48 l i s t s 2 = sor t ed ( temp dict2 . i tems ( ) )

49 x2 , y2 = z ip (∗ l i s t s 2 )

50

51 t rans prob = d i c t ( )

52 t rans prob [ ’ time ’ ] = x1

53 t rans prob [ ’ t rans prob ’+s t r (n)+ ’ s i t e s ’ ] = y1

54 f i l e name1 = ( ’ NDis ’+s t r (n)+ ’ s i t e s ’

55 +s t r ( t ime s t ep s )+ ’ t s ’

56 +s t r ( t ime range )+ ’ t ime range ’ )

57

58 su rv i va l p r ob = d i c t ( )

59 su rv i va l p r ob [ ’ time ’ ] = x2

60 su rv i va l p r ob [ ’ s u rv i va l p r ob ’+s t r (n)+ ’ s i t e s ’ ] = y2

61 f i l e name2 = ( ’ NDis ’+s t r (n)+ ’ su rv i va l p r ob ’+

62 ’ s i t e s ’+s t r ( t ime s t ep s )

63 +’ t s ’+s t r ( t ime range )+ ’ t ime range ’ )

64

65 df1 = pd . DataFrame . f r om d i c t ( t rans prob )

66 df1 . t o c sv ( f i l e name1 +

67 ’ . dat ’ , sep=’ \ t ’ ,
68 encoding=’ utf−8 ’ )

69

70 df2 = pd . DataFrame . f r om d i c t ( su rv i va l p r ob )

71 df2 . t o c sv ( f i l e name2 +

72 ’ . dat ’ , sep=’ \ t ’ ,
73 encoding=’ utf−8 ’ )

74

75 p l t . f i g u r e ( )

76 p l t . p l o t ( x1 , y1 , c o l o r=’ red ’ )

77 p l t . y l ab e l ( r ”$ |U {N,1} ( t ) |ˆ{2} $” ,

78 f o n t s i z e =16, c o l o r=’ b lack ’ )

79 p l t . t i t l e ( s t r (n)+ r ” s i t e s ” ,

80 f o n t s i z e =16, c o l o r=’ b lack ’ )

81 p l t . x l ab e l ( r ”Time ( a . u . ) ” ,

82 f o n t s i z e =16, c o l o r=’ b lack ’ )

83 p l t . s a v e f i g ( f i l e name1+

84 ’ . png ’ , dpi=1000)

85
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86

87 p l t . f i g u r e ( )

88 p l t . p l o t ( x2 , y2 , c o l o r=’ red ’ )

89 p l t . y l ab e l ( r ”$ | S 1 ( t ) |ˆ{2} $” ,

90 f o n t s i z e =16, c o l o r=’ b lack ’ )

91 p l t . t i t l e ( s t r (n)+ r ” s i t e s ” ,

92 f o n t s i z e =16, c o l o r=’ b lack ’ )

93 p l t . x l ab e l ( r ”Time ( a . u . ) ” ,

94 f o n t s i z e =16, c o l o r=’ b lack ’ )

95 p l t . s a v e f i g ( f i l e name2+’ . png ’ , dpi=1000)

96 end = timer . time ( )

97 pr in t ( f i l e name1 , f i l e name2 )

98 pr in t ( s ta r t−end )
99

100

101 c a l c u l a t i o n (500 ,1000 ,32 ,V=1, se=1)
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B.2 Defects calculation.py

1 #!/ usr / bin /env python3

2 # −∗− coding : ut f−8 −∗−
3 ”””

4 Created on Sun Mar 24 21 : 56 : 49 2019

5

6 @author : rimm

7 ”””

8 import numpy as np

9 import i t e r t o o l s as i t

10 import matp lo t l i b . pyplot as p l t

11 import pandas as pd

12 de f p o i n t d e f e c t (N) :

13 matrix = np . z e r o s ( (N,N) )

14 ang l e s = np . random . uniform (0 ,2∗np . pi , s i z e=N)

15 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

16 i f i==j+1 or i==j −1:

17 i f i== N/2−1 and j== N/2 :

18 matrix [ i ] [ j ] = np . cos ( ang l e s [ i ]− ang l e s [ j ] )

19 e l i f j== N/2−1 and i== N/2 :

20 matrix [ i ] [ j ] = np . cos ( ang l e s [ i ]− ang l e s [ j ] )

21 e l s e :

22 matrix [ i ] [ j ] = 1

23 r e turn ( matrix )

24 de f l i n e d e f e c t (N) :

25 matrix = np . z e r o s ( (N,N) )

26 ang l e s = np . random . uniform (0 ,2∗np . pi , s i z e=N)

27 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

28 i f i==j+1 or i==j −1:

29 i f i== in t (N/2 ) :

30 matrix [ i ] [ j ] = np . cos ( ang l e s [ i ]− ang l e s [ j ] )

31 e l i f i== in t (N/2) or j== in t (N/2 ) :

32 matrix [ i ] [ j ] = np . cos ( ang l e s [ i ]− ang l e s [ j ] )

33 e l s e :

34 matrix [ i ] [ j ] = 1

35 r e turn ( matrix )
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36

37 de f ch em i c a l d e f e c t (N, d e f e c t ) :

38 matrix = np . z e r o s ( (N,N) )

39 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

40 i f i==j+1 or i==j −1:

41 matrix [ i ] [ j ] = 1

42 e l i f i== in t (N/2) and j==in t (N/2 ) :

43 matrix [ i ] [ j ] = de f e c t

44 r e turn ( matrix )

45 de f t r a n s i t i o n p r o b a b i l i t y d e f e c t s (N,

46 vals , vecs ,

47 t ime step ,

48 end time , se = 1 ,V = 1 ) :

49 dim = N

50 time = np . l i n s p a c e (0 , end time , t ime s t ep )

51 t s = lambda t : sum ( [ ( vec [ 0 ] ∗ vec [ dim−1]

52 ∗np . exp(−1 j ∗((− se ∗(dim−2)/2)

53 + V∗ va l )∗ t ) ) f o r vec , va l in z ip ( vecs , va l s ) ] )

54

55 t rans prob = [ ( abs ( t s ( i ) ) )∗∗2 f o r i in time ]

56 #l i s t s = sor t ed ( t s d i c t . i tems ( ) )

57 #time , t rans prob = z ip (∗ l i s t s )

58 r e turn ( time , t rans prob )

59 de f s u r v i v a l p r o b a b i l i t y d e f e c t s (N, va l s , vecs ,

60 t ime step ,

61 end time ,

62 se = 1 ,V = 1 ) :

63 dim = N

64 time = np . l i n s p a c e (0 , end time , t ime s t ep )

65 s s = lambda t : sum ( [ ( vec [ 0 ]∗∗2
66 ∗np . exp(−1 j ∗((− se ∗(dim−2)/2)

67 + V∗ va l )∗ t ) )

68 f o r vec , va l in z ip ( vecs , v a l s ) ] )

69

70 su rv i va l p r ob = [ ( abs ( s s ( i ) ) )∗∗2 f o r i in time ]

71 #l i s t s = sor t ed ( t s d i c t . i tems ( ) )

72 #time , t rans prob = z ip (∗ l i s t s )

73 r e turn ( time , s u rv i v a l p r ob )
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74 de f c h em i c a l d e f e c t c a l c u l a t i o n (N,

75 sample range ,

76 t ime step , end time ,

77 se = 1 ,V = 1 ) :

78 sampling = l i s t ( )

79 random value = np . random . uniform (0 ,10 , s i z e =1)

80 a = np . z e ro s ( t ime s t ep )

81 c = np . z e r o s ( t ime s t ep )

82 f o r i in range (1 , sample range+1) :

83 matrix = chem i ca l d e f e c t (N, random value [ 0 ] )

84 vals , vecs = np . l i n a l g . e igh ( matrix )

85 z = 0

86 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

87 i f v a l s [ i ] == va l s [ j ] :

88 z += vecs [ i ] [ 1 ] ∗ vecs [ i ] [ N−1]∗
89 np . t ranspose ( vecs [ j ] [ 1 ] )

90 ∗ np . t ranspose ( vecs [ j ] [ N−1])

91 sampling . append ( z )

92 time , t rans prob = t r a n s i t i o n p r o b a b i l i t y d e f e c t s (N

93 , va l s , vecs ,

94 t ime step ,

95 end time )

96 time , su rv i va l p r ob = s u r v i v a l p r o b a b i l i t y d e f e c t s (N,

97 vals , vecs ,

98 t ime step ,

99 end time )

100 a += trans prob

101 c += su rv i va l p r ob

102 ave rage t = a/ sample range

103 ave rage s = c/ sample range

104 t rans prob=d i c t ( )

105 t avg = sum( sampling )/ sample range

106 su rv i va l p r ob =d i c t ( )

107 x = time

108 y1 = ave rage t

109 y2 = ave rage s

110

111 t rans prob = d i c t ( )
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112 t rans prob [ ’ time ’ ] = x

113 t rans prob [ ’ t rans prob ’+s t r (N)+ ’ s i t e s ’ ] = y1

114 t rans prob [ ’ s u rv i v a l p r ob ’+s t r (1)+ ’ s i t e s ’ ] = y2

115 f i l e name1 = ( ’ c h em i c a l d e f e c t ’+s t r (N)+ ’ s i t e s ’+s t r (1000)+ ’ t s ’

116 +s t r ( sample range)+ ’ sample range ’

117 +s t r ( t ime s t ep )+ ’ t imestep ’

118 +’ s u r v i v a l a t ’+s t r ( 1 ) )

119 df = pd . DataFrame . f r om d i c t ( t rans prob )

120 df . t o c sv ( f i l e name1 +’ . dat ’ , sep=’ \ t ’ , encoding=’ utf−8 ’ )

121 p l t . f i g u r e ( )

122 p l t . p l o t (x , y1 , c o l o r=’ red ’ )

123 p l t . y l ab e l ( r ”$ | \mathcal{U} {N,1} ( t ) |ˆ{2} $” ,

124 f o n t s i z e =16, c o l o r=’ b lack ’ )

125 p l t . t i t l e ( s t r (N)+ r ” s i t e s with Chemical d e f e c t ” ,

126 f o n t s i z e =16, c o l o r=’ b lack ’ )

127 p l t . x l ab e l ( r ”Time ( a . u . ) ” , f o n t s i z e =16, c o l o r=’ b lack ’ )

128 p l t . s a v e f i g ( f i l e name1+’ . png ’ , dpi=1000)

129 p l t . f i g u r e ( )

130 pr in t ( t avg )

131 de f p o i n t d e f e c t c a l c u l a t i o n (N, sample range , t ime step , se = 1 ,V = 1 ) :

132 sampling = l i s t ( )

133 a = np . z e ro s ( t ime s t ep )

134 c = np . z e r o s ( t ime s t ep )

135 f o r i in range (1 , sample range+1) :

136 matrix = po i n t d e f e c t (N)

137 vals , vecs = np . l i n a l g . e igh ( matrix )

138 z = 0

139 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

140 i f v a l s [ i ] == va l s [ j ] :

141 z += vecs [ i ] [ 1 ] ∗ vecs [ i ] [ N−1]

142 ∗ np . t ranspose ( vecs [ j ] [ 1 ] )

143 ∗ np . t ranspose ( vecs [ j ] [ N−1])

144 sampling . append ( z )

145 time , t rans prob = t r a n s i t i o n p r o b a b i l i t y d e f e c t s (N,

146 vals , vecs ,

147 t ime step , 100 )

148

149
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150

151 time , su rv i va l p r ob = s u r v i v a l p r o b a b i l i t y d e f e c t s (N,

152 vals , vecs ,

153 t ime step , 100 )

154 a += trans prob

155 c += su rv i va l p r ob

156 ave rage t = a/ sample range

157 ave rage s = c/ sample range

158 t rans prob=d i c t ( )

159 t avg = sum( sampling )/ sample range

160 su rv i va l p r ob =d i c t ( )

161 x = time

162 y1 = ave rage t

163 y2 = ave rage s

164

165 t rans prob = d i c t ( )

166 t rans prob [ ’ time ’ ] = x

167 t rans prob [ ’ t rans prob ’+s t r (N)+ ’ s i t e s ’ ] = y1

168 t rans prob [ ’ s u rv i v a l p r ob ’+s t r (1)+ ’ s i t e s ’ ] = y2

169 f i l e name1 = ( ’ Defect Dis V ’+s t r (N)+ ’ s i t e s ’+s t r (1000)+ ’ t s ’

170 +s t r ( sample range)+ ’ sample range ’

171 +s t r ( t ime s t ep )+ ’ t imestep ’

172 +’ s u r v i v a l a t ’+s t r ( 1 ) )

173 df = pd . DataFrame . f r om d i c t ( t rans prob )

174 df . t o c sv ( f i l e name1 +’ . dat ’ , sep=’ \ t ’ , encoding=’ utf−8 ’ )

175 p l t . f i g u r e ( )

176 p l t . p l o t (x , y1 , c o l o r=’ red ’ )

177 p l t . y l ab e l ( r ”$ | \mathcal{U} {N,1} ( t ) |ˆ{2} $” ,

178 f o n t s i z e =16, c o l o r=’ b lack ’ )

179 p l t . t i t l e ( s t r (N)+ r ” s i t e s with Point d e f e c t ” ,

180 f o n t s i z e =16, c o l o r=’ b lack ’ )

181 p l t . x l ab e l ( r ”Time ( a . u . ) ” , f o n t s i z e =16, c o l o r=’ b lack ’ )

182 p l t . s a v e f i g ( f i l e name1+’ . png ’ , dpi=1000)

183 p l t . f i g u r e ( )

184 pr in t ( t avg )

185

186 de f l i n e d e f e c t c a l c u l a t i o n (N, sample range , t ime step , se = 1 ,V = 1 ) :

187 sampling = l i s t ( )



70

188 a = np . z e ro s ( t ime s t ep )

189 c = np . z e r o s ( t ime s t ep )

190 f o r i in range (1 , sample range+1) :

191 matrix = po i n t d e f e c t (N)

192 vals , vecs = np . l i n a l g . e igh ( matrix )

193 z = 0

194 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

195 i f v a l s [ i ] == va l s [ j ] :

196 z += vecs [ i ] [ 1 ] ∗ vecs [ i ] [ N−1]

197 ∗ np . t ranspose ( vecs [ j ] [ 1 ] )

198 ∗ np . t ranspose ( vecs [ j ] [ N−1])

199 sampling . append ( z )

200 time , t rans prob = t r a n s i t i o n p r o b a b i l i t y d e f e c t s (N,

201 vals , vecs ,

202 t ime step , 200 )

203 time , su rv i va l p r ob = s u r v i v a l p r o b a b i l i t y d e f e c t s (N,

204 vals , vecs ,

205 t ime step , 200 )

206 a += trans prob

207 c += su rv i va l p r ob

208 ave rage t = a/ sample range

209 ave rage s = c/ sample range

210 t rans prob=d i c t ( )

211 t avg = sum( sampling )/ sample range

212 su rv i va l p r ob =d i c t ( )

213 x = time

214 y1 = ave rage t

215 y2 = ave rage s

216

217 t rans prob = d i c t ( )

218 t rans prob [ ’ time ’ ] = x

219 t rans prob [ ’ t rans prob ’+s t r (N)+ ’ s i t e s ’ ] = y1

220 t rans prob [ ’ s u rv i v a l p r ob ’+s t r (1)+ ’ s i t e s ’ ] = y2

221 f i l e name = ( ’ Defect V ’+s t r (N)+ ’ s i t e s ’+s t r (1000)+ ’ t s ’

222 +s t r ( sample range)+ ’ sample range ’

223 +s t r ( t ime s t ep )+ ’ t imestep ’ )

224 df = pd . DataFrame . f r om d i c t ( t rans prob )

225 df . t o c sv ( f i l e name +’ . dat ’ , sep=’ \ t ’ , encoding=’ utf−8 ’ )
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226 p l t . f i g u r e ( )

227 p l t . p l o t (x , y1 , c o l o r=’ red ’ )

228 p l t . y l ab e l ( r ”$ | \mathcal {} {N,1} ( t ) |ˆ{2} $” ,

229 f o n t s i z e =16, c o l o r=’ b lack ’ )

230 p l t . t i t l e ( s t r (N)+ r ” s i t e s with Point d e f e c t ” ,

231 f o n t s i z e =16, c o l o r=’ b lack ’ )

232 p l t . x l ab e l ( r ”Time ( a . u . ) ” , f o n t s i z e =16, c o l o r=’ b lack ’ )

233 p l t . s a v e f i g ( f i l e name+’ . png ’ , dpi=1000)

234 pr in t ( t avg )

235 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
236

237 l i n e d e f e c t c a l c u l a t i o n (N, sample range , t ime s t ep )

238 c h em i c a l d e f e c t c a l c u l a t i o n (N, sample range , t ime s t ep

239 , end time , se = 1 ,V = 1)

240 l i n e d e f e c t c a l c u l a t i o n (N, sample range , end time )
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B.3 Static disorder.py

1 #!/ usr / bin /env python3

2 # −∗− coding : ut f−8 −∗−
3 ”””

4 Created on Sun Mar 24 21 : 45 : 05 2019

5

6 @author : Vijay

7 ”””

8 import numpy as np

9 import i t e r t o o l s as i t

10 import matp lo t l i b . pyplot as p l t

11 import time

12 import pandas as pd

13

14 de f po t en t i a l ma t r i x (dim , angles , geometry=None ) :

15 ””” Generates a nxn square matrix with d iagona l e lements

16 to be zero and o f f−d iagona l e lements as Cosine f unc t i on s

17 o f va lue s ( indexed ) from an array ang l e s .

18

19 The parameter dim i s the d imens i ona l i t y o f

20 the square matrix , ang l e s i s an array that conta in s

21 same number o f e lements as the dimesion o f the matrix

22 and the argument geometry s p e c i f i e s the arrangment o f

23 the system . By de f au l t i t i s s e t to None and gene ra t e s

24 a nu l l matrix i f no argument i s s p e c i f i e d f o r geometry .

25 ”””

26 rows =[ ]

27 f o r i in range (1 , dim+1):

28 row = [ ]

29 f o r j in range (1 , dim+1):

30 i f i==j :

31 row . append (0 )

32 e l i f geometry == ’ l i n e a r ’ :

33 i f i==j+1 or j==i +1:

34 row . append (np . cos ( ang l e s [ i−1]−ang l e s [ j −1]))

35 e l s e :
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36 row . append (0 )

37 e l i f geometry == ’ c y c l i c ’ :

38 i f i==j+1 or j==i +1:

39 row . append (np . cos ( ang l e s [ i−1]−ang l e s [ j −1]))

40 e l i f ( i==dim and j==1 ) or ( i==1 and j==dim ) :

41 row . append (np . cos ( ang l e s [ i−1]−ang l e s [ j −1]))

42 e l s e :

43 row . append (0 )

44 e l i f geometry == ’ c l o s e packed ’ :

45 row . append (np . cos ( ang l e s [ i−1]−ang l e s [ j −1]))

46 e l s e :

47 row . append (0 )

48 rows . append ( row )

49 r e turn np . asanyarray ( rows )

50 de f f a s t pmat r i x (N) :

51 matrix = np . z e r o s ( (N,N) )

52 ang l e s = np . random . uniform (0 ,2∗np . pi , s i z e=N)

53 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

54 i f i==j+1 or i==j −1:

55 matrix [ i ] [ j ] = np . cos ( ang l e s [ i ]− ang l e s [ j ] )

56

57 r e turn ( matrix )

58 de f gen sample space (N, sample range , geometry =None ,

59 matr i ce s=False , ang l e s =False ) :

60 ””” Generates a sample space ( l i s t ) o f NxN matr i ce s

61 sampled over a s e t o f randomly generated ang l e s

62 f o r the co s i n e f unc t i on s in the p o t e n t i a l matirx .

63 sample range ( dtype= in t ( ) ) s p e c i f i e s the number

64 t imes the po t e n t i a l matrix i s sampled over randomly

65 generated ang l e s . The arguments geometry i s same as

66 that f o r the func t i on po t en t i a l ma t r i x

67 matr i ce s ( by d e f au l t=Fal se ) arg ∗∗ i s s p e c i f i e d

68 i f the matr i ce s gene ra t e s are (=True ) to be pr in ted .

69 ang l e s ( by d e f au l t=Fal se ) arg ∗∗ i s s p e c i f i e d to

70 pr in t the s e t o f a r rays o f randomly generated ang l e s

71 f o r each matrix in the sample space . he ar rays are

72 by de f au l t s to r ed as a l i s t ang l e s sample . ”””

73
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74 sample se t = range (1 , sample range+1)

75 sample space= l i s t ( )

76 ang le s sample = l i s t ( )

77 f o r j in sample se t :

78 random angles = np . random . uniform (0 ,2∗np . pi , s i z e=N)

79 ang le s sample . append ( random angles )

80 matrix = po t en t i a l ma t r i x (N,

81 random angles , geometry )

82 sample space . append ( matrix )

83 i f matr i ce s == True :

84 pr in t ( j )

85 pr in t ( matrix )

86 r e turn ( sample space )

87

88 de f t a v g t r a n s i t i o n p r o b a b i l i t y (N, sample range ,

89 se = 1 ,V = 1 ) :

90 sampling = l i s t ( )

91 f o r i in range (1 , sample range+1) :

92 matrix = fa s t pmat r i x (N)

93 vals , vecs = np . l i n a l g . e igh ( matrix )

94 z = 0

95 f o r ( i , j ) in i t . product ( range (N) , range (N) ) :

96 i f v a l s [ i ] == va l s [ j ] :

97 z += vecs [ i ] [ 1 ] ∗ vecs [ i ] [ N−1]∗
98 np . t ranspose ( vecs [ j ] [ 1 ] ) ∗
99 np . t ranspose ( vecs [ j ] [ N−1])

100 sampling . append ( z )

101 t avg = sum( sampling )/ sample range

102 r e turn ( t avg )

103

104

105 de f t r a n s i t i o n p r o b a b i l i t y (N, vecs , va l s ,

106 t ime step ,

107 end time , se = 1 ,V = 1 ) :

108

109 dim = N

110 time = np . l i n s p a c e (0 , end time , t ime s t ep )

111 t s = lambda t : sum ( [ ( vec [ 0 ] ∗ vec [ dim−1]
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112 ∗np . exp(−1 j ∗((− se ∗(dim−2)/2)

113 + V∗ va l )∗ t ) )

114 f o r vec , va l in z ip ( vecs , va l s ) ] )

115

116 t rans prob = [ ( abs ( t s ( i ) ) )∗∗2 f o r i in time ]

117 #l i s t s = sor t ed ( t s d i c t . i tems ( ) )

118 #time , t rans prob = z ip (∗ l i s t s )

119 r e turn ( time , t rans prob )

120 de f s u r v i v a l p r o b a b i l i t y ( s i t e ,

121 poten t i a l mat r i x ,

122 t ime step , end time

123 , s e = 1 ,V = 1 ) :

124 vals , vecs = np . l i n a l g . e i gh ( po t en t i a l ma t r i x )

125

126

127 dim = po t en t i a l ma t r i x . shape [ 0 ]

128 index= range (1 , dim+1)

129 time = np . l i n s p a c e (0 , end time , t ime s t ep )

130 s s = lambda t : sum ( [ ( vec [ s i t e ]∗∗2 ∗
131 np . exp(−1 j ∗((− se ∗(dim−2)/2)

132 + V∗ va l )∗ t ) )

133 f o r vec , va l in z ip ( vecs , va l s ) ] )

134

135 su rv i va l p r ob = [ ( abs ( s s ( i ) ) )∗∗2 f o r i in time ]

136 #l i s t s = sor t ed ( t s d i c t . i tems ( ) )

137 #time , t rans prob = z ip (∗ l i s t s )

138 r e turn ( time , s u rv i v a l p r ob )

139 de f c a l c u l a t i o n (N, sample range ,

140 t ime step ,

141 end time ,

142 s u r v i v a l s i t e ) :

143 s t a r t = time . time ( )

144

145 my space = gen sample space (N, sample range ,

146 geometry=’ l i n e a r ’ )

147 a = np . z e ro s ( t ime s t ep )

148 c = np . z e r o s ( t ime s t ep )

149 i n td = time . time ( )
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150 pr in t ( intd−s t a r t )

151 f o r m in my space :

152 t , t ransprob = t r a n s i t i o n p r o b a b i l i t y (m,

153 t ime step ,

154 end time )

155 t , su rv iva lp rob = s u r v i v a l p r o b a b i l i t y ( s u r v i v a l s i t e ,

156 m, t ime step ,

157 end time )

158 a+= transprob

159 c+= surv iva lp rob

160 ave rage t = a/ l en (my space )

161 ave rage s = c/ l en (my space )

162 t rans prob=d i c t ( )

163 su rv i va l p r ob =d i c t ( )

164 x = t

165 y1 = ave rage t

166 y2 = ave rage s

167

168 end = time . time ( )

169 pr in t ( end−s t a r t )

170 t rans prob [ ’ time ’ ] = x

171 t rans prob [ ’ t rans prob ’+s t r (N)+ ’ s i t e s ’ ] = y1

172 t rans prob [ ’ s u rv i v a l p r ob ’+s t r ( s u r v i v a l s i t e )+ ’ s i t e s ’ ] = y2

173 f i l e name = ( ’ St Dis V ’+s t r (N)

174 +’ s i t e s ’+s t r (1000)+ ’ t s ’

175 +s t r ( sample range)+ ’ sample range ’

176 +s t r ( t ime s t ep )+ ’ t imestep ’ )

177 f i l e name1 = ( ’ St Dis V ’+s t r (N)+ ’ s i t e s ’

178 +s t r (1000)+ ’ t s ’

179 +s t r ( sample range )

180 +’ sample range ’

181 +s t r ( t ime s t ep )

182 +’ t imestep ’+’ s u r v i v a l a t ’

183 +s t r ( s u r v i v a l s i t e ) )

184 df = pd . DataFrame . f r om d i c t ( t rans prob )

185 df . t o c sv ( f i l e name +’ . dat ’ , sep=’ \ t ’ , encoding=’ utf−8 ’ )

186 p l t . f i g u r e ( )

187 p l t . p l o t (x , y2 , c o l o r=’ red ’ )
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188 p l t . y l ab e l ( r ”$ | S n ( t ) |ˆ{2} $” , f o n t s i z e =16, c o l o r=’ b lack ’ )

189 p l t . t i t l e ( s t r (N)+ r ” s i t e s ” , f o n t s i z e =16, c o l o r=’ black ’ )

190 p l t . x l ab e l ( r ”Time ( a . u . ) ” , f o n t s i z e =16, c o l o r=’ b lack ’ )

191 p l t . s a v e f i g ( f i l e name1+’ . png ’ , dpi=1000)

192

193 p l t . f i g u r e ( )

194 p l t . p l o t (x , y1 , c o l o r=’ red ’ )

195 p l t . y l ab e l ( r ”$ | \mathcal{U} {N,1} ( t ) |ˆ{2} $” ,

196 f o n t s i z e =16, c o l o r=’ b lack ’ )

197 p l t . t i t l e ( s t r (N)+ r ” s i t e s ” ,

198 f o n t s i z e =16, c o l o r=’ b lack ’ )

199 p l t . x l ab e l ( r ”Time ( a . u . ) ” ,

200 f o n t s i z e =16, c o l o r=’ b lack ’ )

201 p l t . s a v e f i g ( f i l e name+’ . png ’ , dpi=1000)

202 r e turn (my space , t )
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B.4 Dynamic disorder.py

1 import i t e r t o o l s as i t

2 import pandas as pd

3 import numpy as np

4 import time

5 import matp lo t l i b . pyplot as p l t

6

7 c l a s s Dynamic disorder :

8 de f i n i t ( s e l f ,N,M) :

9 s e l f .N = N

10 s e l f .M = M

11 de f i nv e r s e ( s e l f , tup , d i c t i ona ry ) :

12 # Takes the ba s i s s t a t e to re turn i t s key which i s the index

13 t ry :

14 key va lue = ( l i s t ( d i c t i ona ry . keys ( ) )

15 [ l i s t ( d i c t i ona ry . va lue s ( ) ) . index ( tup ) ] )

16 r e turn ( key va lue )

17 except ValueError :

18 pass

19

20 de f op1 ( s e l f , tup ) :

21 # I t i s cor re sponds to the f i r s t term o f the Hamiltonian i . e

22 # k i n e t i c term o f the ro to r in f o u r i e r space

23 sum k = sum ( [ tup [ i ]∗∗2 f o r i in s e l f . s i t e s ] )

24 r e turn ( sum k )

25

26 de f op2 ( s e l f , tup ) :

27 # op2 i s the r o t o r coup l ing operator

28 # retu rns l i s t o f t up l e s generated by

29 # the ro to r coup l ing term u(\ theta )
30 r c 1 = l i s t ( ) # ro to r coup l ing term 1

31 r c 2 = l i s t ( ) # ro to r coup l ing term 2

32 t u p l i s t = l i s t ( tup )

33 f o r i in s e l f . s i t e s :

34 f o r j in s e l f . s i t e s :

35 i f j>i :
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36 r1 = t u p l i s t . copy ( ) # ro to r term 1

37 r2 = t u p l i s t . copy ( ) # ro to r term 2

38 #pr in t ( i , j )

39 r1 [ i ]+=1

40 # r a i s e s k i momentum s t a t e by +1 changes in \ p s i { t i l d a }
41 r1 [ j ]−=1

42 # lowers k j momentum s t a t e by +1 changes in \ p s i { t i l d a }
43

44 r2 [ j ]+=1

45 r2 [ i ]−=1

46 #pr in t ( tup l e ( r1 ) , tup l e ( r2 ) )

47 r c 1 . append ( tup l e ( r1 ) )

48 #i>j summation that works f i n e s with operat i on at two s i t e s

49 r c 2 . append ( tup l e ( r2 ) )

50 r e turn ( rc 1 , r c 2 )

51

52

53

54

55

56

57 de f op3 ( s e l f , tup ) :

58 # op3 i s the exc i ton−r o t o r coup l ing operator

59 # retu rns l i s t o f t up l e s generated by

60 # the ro to r coup l ing term V(\ theta )
61 ex r c 1 = l i s t ( ) # exc i ton−r o t o r coup l ing term 1

62 ex r c 2 = l i s t ( ) # exc i ton−r o t o r coup l ing term 2

63 i = tup [ 0 ]

64 f o r n in s e l f . s i t e s :

65 t u p l i s t = l i s t ( tup )

66 #pr in t ( tup )

67 i f n!= i :

68 t u p l i s t [ 0 ] = n

69 er1 = t u p l i s t . copy ( ) #exc i t on ro to r coup l ing term 1

70 er2 = t u p l i s t . copy ( ) #exc t i on ro to r coup l ing term 2

71 #pr in t ( i , n )

72 er1 [ i ]+=1

73 # r a i s e s k i momentum s t a t e by +1 changes in \ p s i { t i l d a }
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74 er1 [ n]−=1

75 # lowers k n momentum s t a t e by +1 changes in \ p s i { t i l d a }
76

77 er2 [ i ]−=1

78 # lowers k i momentum s t a t e by +1 changes

79 er2 [ n]+=1

80 # r a i s e s k n momentum s t a t e by +1 changes

81 #pr in t ( er1 , er2 )

82 ex r c 1 . append ( tup l e ( er1 ) )

83 #i>j summation that works f i n e s with operat i on at two s i t e s

84 ex r c 2 . append ( tup l e ( er2 ) )

85 r e turn ( exrc 1 , ex r c 2 )

86

87 de f append to row ( s e l f , l s t , row , v ) :

88 f o r i in l s t :

89 c = s e l f . i n v e r s e ( i , s e l f . b a s i s )

90 t ry :

91 row [ c−1] += v

92 except TypeError :

93 pass

94 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 de f ba s i s g en ( s e l f ) :

96 # gene ra t e s a d i c t i ona ry o f indexed tup l e s .

97 i t e r a b l e = l i s t ( range(− s e l f .M, s e l f .M + 1))

98 # gene ra t e s a l l p o s s i b l e momentum s t a t e s f o r a l l k in [−N,N]

99 momentum states =l i s t ( i t . product ( i t e r a b l e , r epeat=s e l f .N) )

100 momentum sub spaces = d i c t ( )

101 #pr in t ( l en (momentum states ) )

102

103 s e l f . s i t e s = range (1 , s e l f .N + 1)

104

105 # In the f o l l ow i n g loop a (2M+1)ˆN tup l e s ( k1 , k2 , k3 , . . kn )

106 # are taken from momentum states and

107 #segregated in to momentum subspaces .

108 f o r i in momentum states :

109 i f sum( i ) in momentum sub spaces :

110 i f i not in momentum sub spaces [ ( sum( i ) ) ] :

111 momentum sub spaces [ ( sum( i ) ) ] . append ( i )
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112 e l s e :

113 momentum sub spaces [ ( sum( i ) ) ] = [ i ]

114

115 index = 0

116 s e l f . b a s i s=d i c t ( )

117 f i n a l s t a t e s =[ ]

118 f o r f in s e l f . s i t e s :

119 f o r i in momentum sub spaces :

120 f o r j in momentum sub spaces [ i ] :

121 index+=1

122 s e l f . b a s i s [ index ] = ( f ,)+ j

123 i f f== s e l f .N:

124 f i n a l s t a t e s . append ( ( f ,)+ j )

125

126 # tab l e has in fo rmat ion o f the seg rega ted ba s i s s t a t e s

127 t ab l e = pd . DataFrame ( d i c t ( [ (k , pd . S e r i e s ( v ) )

128 f o r k , v in momentum sub spaces . i tems ( ) ] ) )

129 r e turn ( f i n a l s t a t e s , t ab l e . t ranspose ( ) )

130

131 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132

133 de f t ime func t r an s p rob ( s e l f , t ) :

134 vecs = s e l f . e i g v e c s

135 va l s = s e l f . e i g v a l s

136 c =0

137 f o r vec , va l in z ip ( vecs , va l s ) :

138 c += ( vec [ s e l f . i n t i nd ex ] ) ∗ sum ( [ vec [ i −1]

139 f o r i in s e l f . f i n a l i n d i c e s ] )

140 ∗ np . exp(−1 j ∗( va l ∗ t ) )

141 t s = abs ( c )∗∗2
142 r e turn ( t s )

143 de f t ime f un c su rv i v a l p r ob ( s e l f , t ) :

144 vecs = s e l f . e i g v e c s

145 va l s = s e l f . e i g v a l s

146 cc =0

147 f o r vec , va l in z ip ( vecs , va l s ) :

148 cc += ( vec [ s e l f . i n t i nd ex ] )∗∗2
149 ∗ np . exp(−1 j ∗( va l ∗ t ) )
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150 s s = abs ( cc )∗∗2
151 r e turn ( s s )

152 de f t r a n s i t i o n p r o b a b i l i t y ( s e l f , f i n a l s t a t e s ,

153 end time , t ime s t ep ) :

154 N = s e l f .N

155 M = s e l f .M

156 t i m e l i s t = np . l i n s p a c e (0 , end time , t ime s t ep )

157 z e r o s t a t e = [ 0 ] ∗N
158 i n t s t a t e = ((1 ,)+ tup l e ( z e r o s t a t e ) )

159 s e l f . i n t i nd ex = s e l f . i n v e r s e ( i n t s t a t e , s e l f . b a s i s )

160 s e l f . f i n a l i n d i c e s = [ s e l f . i n v e r s e ( i , s e l f . b a s i s )

161 f o r i in f i n a l s t a t e s ]

162

163 vec t ime func t i on1 = np . v e c t o r i z e ( s e l f . t ime func t rans prob ,

164 otypes=[ f l o a t ] )

165 t rans prob = l i s t ( v e c t ime func t i on1 ( t im e l i s t ) )

166

167 f i l e name = ( ’ t r i a l Dyn D i s ’+ s t r (N)+ ’ s i t e s ’

168 +s t r ( (2∗M + 1))

169 +’ DOF ’+s t r ( t ime s t ep )+ ’ t s ’

170 +s t r ( end time)+ ’ t ime range ’ )

171 s e l f . i n t t ime3 = time . time ( )

172 pr in t ( ”For t imerange ”+s t r ( end time)+

173 ” c a l c u l a t i o n time i s ”+

174 ( s t r ( s e l f . in t t ime3− s e l f . i n t t ime2 ) ) )

175 r e turn ( t im e l i s t , t rans prob , t ime step , end time , f i l e name )

176

177 de f s u r v i v a l p r o b a b i l i t y ( s e l f , end time , t ime s t ep ) :

178 N = s e l f .N

179 t i m e l i s t = np . l i n s p a c e (0 , end time , t ime s t ep )

180 z e r o s t a t e = [ 0 ] ∗N
181 i n t s t a t e = ((1 ,)+ tup l e ( z e r o s t a t e ) )

182 s e l f . i n t i nd ex = s e l f . i n v e r s e ( i n t s t a t e , s e l f . b a s i s )

183 vec t ime func t i on2 = np . v e c t o r i z e ( s e l f . t ime func su rv i va l p rob ,

184 otypes=[ f l o a t ] )

185 su rv i va l p r ob = l i s t ( v e c t ime func t i on2 ( t im e l i s t ) )

186

187 f i l e name1 = ( ’ Dyn Dis ’+s t r (N)+ ’ s i t e s ’+s t r ( t ime s t ep )+ ’ t s ’



83

188 +s t r ( t ime s t ep )+ ’ t imestep ’+’ s u r v i v a l a t ’+s t r ( 1 ) )

189 s e l f . i n t t ime3 = time . time ( )

190 pr in t ( ”For t imerange ”+s t r ( end time)+

191 ” c a l c u l a t i o n time i s ”+

192 ( s t r ( s e l f . in t t ime3− s e l f . i n t t ime2 ) ) )

193 r e turn ( t im e l i s t , su rv iva l p rob ,

194 t ime step , end time , f i l e name1 )

195

196 de f save data ( s e l f , t im e l i s t , t rans prob ,

197 t ime step , end time , f i l e name ) :

198

199 t r an s p r ob d i c t = d i c t ( )

200 t r an s p r ob d i c t [ ’ time ’ ] = t im e l i s t

201 t r an s p r ob d i c t [ ’ t rans prob ’+s t r ( s e l f .N)+ ’ s i t e s ’ ] = trans prob

202 df = pd . DataFrame . f r om d i c t ( t r an s p r ob d i c t )

203 df . t o c sv ( f i l e name +’ . dat ’ , sep=’ \ t ’ , encoding=’ utf−8 ’ )

204

205 de f p l o t da ta ( s e l f , t im e l i s t ,

206 ts , t ime step , end time , f i l e name ) :

207 p l t . f i g u r e ( )

208 p l t . p l o t ( t im e l i s t , t s , c o l o r=’ red ’ )

209 p l t . y l ab e l ( r ”$ |U N( t ) |ˆ{2} $” ,

210 f o n t s i z e =16, c o l o r=’ b lack ’ )

211 p l t . t i t l e ( s t r ( s e l f .N)+ ’ s i t e s with ’+

212 s t r (2∗ s e l f .M +1)+

213 r ” degree s o f freedom each” ,

214 f o n t s i z e =16, c o l o r=’ b lack ’ )

215 p l t . x l ab e l ( r ”Time ( a . u . ) ” ,

216 f o n t s i z e =16, c o l o r=’ b lack ’ )

217 p l t . s a v e f i g ( f i l e name+’ . png ’ , dpi=1000)

218 p l t . show ( )

219

220 de f p l o t s u r v i v a l d a t a ( s e l f , t im e l i s t , ts ,

221 t ime step , end time , f i l e name ) :

222 p l t . f i g u r e ( )

223 p l t . p l o t ( t im e l i s t , t s , c o l o r=’ red ’ )

224 p l t . y l ab e l ( r ”$ | S 1 ( t ) |ˆ{2} $” ,

225 f o n t s i z e =16, c o l o r=’ b lack ’ )
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226 p l t . t i t l e ( s t r ( s e l f .N)+ ’ s i t e s with ’

227 +s t r (2∗ s e l f .M +1)+r ” degree s o f freedom each” ,

228 f o n t s i z e =16, c o l o r=’ b lack ’ )

229 p l t . x l ab e l ( r ”Time ( a . u . ) ” ,

230 f o n t s i z e =16, c o l o r=’ b lack ’ )

231 p l t . s a v e f i g ( f i l e name+’ . png ’ , dpi=1000)

232 p l t . show ( )

233

234 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
235

236 de f mat r i x f r om bas i s ( s e l f ,m) :

237 ket = s e l f . b a s i s [m]

238 row = np . z e r o s ( l en ( s e l f . b a s i s ) )

239 k sq = s e l f . op1 ( ket )

240 row [m−1]= ( s e l f . r o t o r f r e q ∗ k sq ) + s e l f . e x c i t o n f r e q

241 # puts the summation k i ˆ2 along the d iagona l

242 ra , rb = s e l f . op2 ( ket )

243 ea , eb = s e l f . op3 ( ket )

244 s e l f . append to row ( ra , row , s e l f . v )

245 s e l f . append to row ( rb , row , s e l f . v )

246 s e l f . append to row ( ea , row , s e l f . u )

247 s e l f . append to row ( eb , row , s e l f . u )

248 r e turn ( row )

249

250 de f c a l c u l a t i o n ( s e l f ) :

251 s e l f . v=1.0

252 s e l f . u=1.0

253 s e l f . r o t o r f r e q = 1 .0

254 s e l f . e x c i t o n f r e q = 0

255 s e l f . s t a r t = time . time ( )

256 f s t a t e s , df momentum space = s e l f . b a s i s g en ( )

257

258 s e l f . i n t t ime1 = time . time ( )

259 pr in t ( ”Bas i s generated in ”

260 +( s t r ( s e l f . i n t t ime1 − s e l f . s t a r t ) ) )

261 # Each ba s i s s t a t e i s taken and ope ra t i on s

262 # are c a r r i e d to bu i ld the Hamiltonian Matrix .

263 vec mat r i x f r om bas i s = np . v e c t o r i z e ( s e l f . mat r ix f rom bas i s ,
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264 otypes=[np . ndarray ] )

265 s e l f . keys = l i s t ( s e l f . b a s i s . keys ( ) )

266 H = l i s t ( v e c mat r i x f r om bas i s ( s e l f . keys ) )

267 vals , vecs = np . l i n a l g . e igh (H)

268 #eigh r e tu rn s vecs as matrix ob j e c t i f input i s a matrix

269 s e l f . e i g v a l s = va l s

270 s e l f . e i g v e c s = vecs

271 #pr in t ( s e l f . e i g va l s , s e l f . e i g v e c s )

272 s e l f . i n t t ime2 = time . time ( )

273 pr in t ( ”Matrix generated and d i agona l i s ed in ”+

274 ( s t r ( s e l f . in t t ime2− s e l f . i n t t ime1 ) ) )

275 #np . s e t p r i n t o p t i o n s ( th r e sho ld=np . nan )

276 #pr in t (H. shape )

277 #pr in t (H)

278 #pr in t ( df momentum space )

279 #fo r a in [ ( i , b a s i s [ i ] ) f o r i in ba s i s ] :

280 # pr in t ( a )

281 r e turn (H, f s t a t e s )

282 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
283 sys = Dynamic disorder (2 , 2 )

284 H, f s t a t e s = sys . c a l c u l a t i o n ( )

285 t im e l i s t ,

286 t rans prob ,

287 t ime step ,

288 end time ,

289 f i l e name1 = sys . t r a n s i t i o n p r o b a b i l i t y ( f s t a t e s , 200 ,1000)

290 sys . save data ( t im e l i s t , t rans prob , t ime step , end time , f i l e name1 )

291 sys . p l o t da ta ( t im e l i s t , t rans prob , t ime step , end time , f i l e name1 )

292 t im e l i s t ,

293 su rv iva l p rob ,

294 t ime step ,

295 end time ,

296 f i l e name2 = sys . s u r v i v a l p r o b a b i l i t y (200 ,1000)

297 sys . save data ( t im e l i s t , su rv iva l p rob ,

298 t ime step , end time , f i l e name2 )

299 sys . p l o t s u r v i v a l d a t a ( t im e l i s t , su rv iva l p rob ,

300 t ime step , end time , f i l e name2 )
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C
Commutation Relations

As mentioned in the chapter 3 of this thesis. The Hamiltonian for the

model that we have proposed commutes with the excitation number operator

N̂ex and the total momentum operator P̂total. In this appendix chapter we

prove the commutator relations between the Hamiltonian ĤS and these two

operators.

C.1 Excitation Number Operator N̂ex

The commutator between ĤS and N̂ex is given by

�
ĤS, N̂ex

�
= ĤSN̂ex − N̂exĤS
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We have

ĤS =


�ωε

N�

i=1

σ+
i σ

−
i − �ωθ

N�

i=1

∂2

∂θ2i
+

N�

i,j

i>j

2uij cos(2(θi − θj))

+
N�

i,j

i�=j

2vij cos(θi − θj)σ
+
i σ

−
j




and N̂ex =
N�

n

N̂n =
N�

n

σ+
n σ

−
n

ĤSN̂ex =�ωε

N�

n

N�

i=1

σ+
i σ

−
i σ

+
n σ

−
n − �ωθ

N�

n

N�

i=1

∂2

∂θ2i
σ+
n σ

−
n

+
N�

i,j

i>j

N�

n

2uij cos(2(θi − θj))σ
+
n σ

−
n

+
N�

n

N�

i,j

i�=j

2vij cos(θi − θj)σ
+
i σ

−
j σ

+
n σ

−
n

N̂exĤS =�ωε

N�

n

N�

i=1

σ+
n σ

−
n σ

+
i σ

−
i − �ωθ

N�

n

N�

i=1

σ+
n σ

−
n

∂2

∂θ2i

+
N�

i,j

i>j

N�

n

σ+
n σ

−
n 2uij cos(2(θi − θj))

+
N�

n

N�

i,j

i�=j

σ+
n σ

−
n 2vij cos(θi − θj)σ

+
i σ

−
j
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We know that

σ±
i =I2×2 ⊗ I2×2 · · ·⊗ σ± ⊗ · · ·⊗ I2×2 i ∈ {1, · · · , N}

σ± at ith position of a polymer chain of size N

From the above we have the following relations for the Pauli spin operators:

(i) [σ+
i , σ

+
n ] = 0

(ii) [σ−
i , σ

−
n ] = 0

(iii) [σ+
i , σ

−
j ] = δij(σ

+
i σ

−
j − σ−

i σ
+
j )

We know that N̂ex commutes with ∂2

∂θ2i
and cos(2(θi − θj)). Therefore, to

prove that N̂ex commutes with ĤS, it is sufficient to show that N̂n commutes

with σ+
i σ

−
i and σ+

i σ
−
j .

Using the commutator relations

[AB,C] = A[B,C] + [A,C]B

[A,BC] = [A,B]C + B[A,C]

we write,

[σ+
i σ

−
i , N̂n] =σ+

i [σ
−
i , N̂n] + [σ+

i , N̂n]σ
−
i

[σ−
i , σ

+
n σ

−
n ] =[σ−

i , σ
+
n ]σ

−
n + σ+

n [σ
−
i , σ

−
n ]

=− δni(σ
+
n σ

−
i − σ−

i σ
+
n )σ

−
n

[σ+
i , σ

+
n σ

−
n ] =[σ+

i , σ
+
n ]σ

−
n + σ+

n [σ
+
i , σ

−
n ]

=σ+
n δni(σ

+
i σ

−
n − σ−

n σ
+
i )
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[σ+
i σ

−
i , N̂n] = σ+

i [−δin(σ
+
n σ

−
i − σ−

i σ
+
n )σ

−
n ] + [σ+

n δin(σ
+
i σ

−
n − σ−

n σ
+
i )]σ

−
i

for any i�=n, [σ+
i σ

−
i , N̂n] = 0 as the δin terms vanish.

So , let us consider the case i=n

[σ+
n σ

−
n , N̂n] = −σ+

n σ
+
n σ

−
n σ

−
n + σ+

n σ
−
n σ

+
n σ

−
n + σ+

n σ
+
n σ

−
n σ

−
n − σ+

n σ
−
n σ

+
n σ

−
n

∴ [σ+
i σ

−
i , N̂n] = 0

Similarly, we have

[σ+
i σ

−
j , N̂n] =σ+

i [σ
−
j , N̂n] + [σ+

i , N̂n]σ
−
j

[σ−
j , σ

+
n σ

−
n ] =[σ−

j , σ
+
n ]σ

−
n + σ+

n [σ
−
j , σ

−
n ]

=− δnj(σ
+
n σ

−
j − σ−

j σ
+
n )σ

−
n

[σ+
i , σ

+
n σ

−
n ] =[σ+

i , σ
+
n ]σ

−
n + σ+

n [σ
+
i , σ

−
n ]

=σ+
n δni(σ

+
i σ

−
n − σ−

n σ
+
i )

[σ+
i σ

−
j , N̂n] =σ+

i [−δnj(σ
+
n σ

−
j − σ−

j σ
+
n )σ

−
n ] + [σ+

n δni(σ
+
i σ

−
n − σ−

n σ
+
i )]σ

−
j

for n=i=j

=− σ+
n σ

+
n σ

−
n σ

−
n + σ+

n σ
−
n σ

+
n σ

−
n + σ+

n σ
+
n σ

−
n σ

−
n − σ+

n σ
−
n σ

+
n σ

−
n

∴ [σ+
i σ

−
j , N̂n] = 0

As the excitation number operator commutes with all the terms of the Hamil-

tonian, we conclude that it commutes with entire Hamiltonian ĤS and thus

the excitation number operator (N̂ex) is a good quantum number.
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C.2 Total Momentum Operator P̂Total

The commutator between ĤS and P̂Tot is given by

�
ĤS, P̂Tot

�
= ĤSP̂Tot − P̂TotĤS

where P̂Tot = −i�
�N

k
∂

∂θk
. First we consider, ĤSP̂Tot

ĤSP̂Tot = − i�2ωε

N�

k

N�

i=1

σ+
i σ

−
i

∂

∂θk
+ i�2ωθ

N�

k

N�

i=1

∂2

∂θ2i

∂

∂θk

− i�
N�

k

N�

i,j

i>j

2uij cos(2(θi − θj))
∂

∂θk

− i�
N�

k

N�

i,j

i�=j

2vij cos(θi − θj)σ
+
i σ

−
j

∂

∂θk

P̂TotĤS = − i�2ωε

N�

k

N�

i=1

∂

∂θk
σ+
i σ

−
i + i�2ωθ

N�

k

N�

i=1

∂

∂θk

∂2

∂θ2i

− i�
N�

k

N�

i,j

i>j

∂

∂θk
2uij cos(2(θi − θj))

− i�
N�

k

N�

i,j

i�=j

∂

∂θk
2vij cos(θi − θj)σ

+
i σ

−
j
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Where we have

N�

i,j

N�

k

∂

∂θk
cos(2(θi − θj)) =

N�

i,j

N�

k

�
−2 sin(2(θi − θj)) δi,k + 2 sin(2(θi − θj)) δj,k

�

=
N�

i,j

�
−2

N�

k

sin(2(θi − θj)) δi,k + 2
N�

k

sin(2(θi − θj)) δj,k

�

=2

�
N�

i,j

sin(2(θi − θj))−
N�

i,j

sin(2(θi − θj))

�

∴
N�

i,j

N�

k

∂

∂θk
cos(2(θi − θj)) = 0 (C 7)

Similarly,

N�

i,j

i>j

N�

k

∂

∂θk
cos((θi − θj)) =

N�

i,j

i>j

N�

k

�
− sin((θi − θj)) δi,k + sin((θi − θj)) δj,k

�

=
N�

i,j

i>j

�
−

N�

k

sin((θi − θj)) δi,k +
N�

k

sin((θi − θj)) δj,k

�

=
N�

i,j

i>j

[sin((θi − θj))− sin((θi − θj))]

∴
N�

i,j

i>j

N�

k

∂

∂θk
cos((θi − θj)) = 0 (C 8)



93

Let us consider a general case

��
N�

k

∂

∂θk

�
, cos(θi − θj)

�
g(θm) = g(θm)

�
N�

k

∂

∂θk

�
cos(θi − θj)

+ g
�
(θm) cos(θi − θj)− cos(θi − θj)g

�
(θm)

From equation (C 7) we know that
��N

k
∂

∂θk

�
cos(θi − θj) = 0

∴
��

N�

k

∂

∂θk

�
, cos(θi − θj)

�
g(θm) = 0 (C 9)

We know that ∂
∂θk

commutes with σ+
i σ

−
i and σ+

i σ
−
j . Also, we know from

Clairaut’s theorem on equality of mixed partial differentials that

∂2

∂θ2i

∂

∂θk
=

∂

∂θk

∂2

∂θ2i
(C 10)

Therefore, we find that ĤS commutes with P̂Tot i.e.
�
ĤS, P̂Tot

�
= 0. Thus,

as the total momentum operator commutes with the Hamiltonian we could

project the it into the zero momentum space as total momentum is conserved.
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[6] Volkhard May and Oliver Kühn. Charge and energy transfer dynamics

in molecular systems. John Wiley & Sons, 2008.

[7] Lubert Stryer and Richard P Haugland. Energy transfer: a spectroscopic

ruler. Proceedings of the National Academy of Sciences of the United

States of America, 58(2):719, 1967.
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