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Quantum transport in Disordered Systems: The Inspiration
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Absence of Diffusion in Certain Random Lattices

P. W. ANDERsON
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Anderson, Philip W. " Absence of diffusion in certain random lattices.”
Physical review 109.5 (1958): 1492.

Lagendijk, Aart, Bart Van Tiggelen, and Diederik S. Wiersma.
" Fifty years of Anderson localization.” Phys. Today 62.8 (2009): 24-29.
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" Localization was a different matter: very few believed
it at the time, and even fewer saw its importance;
among those who failed to fully understand it at first
was certainly its author. It has yet to receive adequate
mathematical treatment, and one has to resort to the
indignity of numerical simulations to settle even the
simplest questions about it.”

—Philip W. Anderson, Nobel lecture, 8 December 1977
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Exciton Transport

@ The large variations in mobilities
observed in the case of - conjugated
polymers such as MEH-PPV and P3HT.

@ The Torsional motion in the backbone of
the polymer chain breaks the conjugated
pathway

@ Femtosecond time-scale Torsional
relaxation in Organic Semiconductors.

Poly(phenylene vinylene) chain

‘open chain
conformation

tightly coiled
conformation
conformational

conjugation break

¥

Grozema, Ferdinand C., et al. “Intramolecular charge transport along isolated chains of conjugated polymers:
Effect of torsional disorder and polymerization defects.” The Journal of Physical Chemistry B (2002)

Jean-Luc Bredas and Robert Silbey. Excitons surf along conjugated polymer chains.
Science, 323(5912):348- 349, 2009

Clark, T Nelson, S Tretiak, G Cirmi, and Guglielmo Lanzani. Femtosecond torsional relaxation.Nature Physics,
8(3):225, 2012
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Basic Formulation

Hamiltonian of the system in the Hilbert space Hs = He @ Ho, ® Ho, @ ...... ® Hoy

N
*ﬁweZ 52 T 2 V) +ﬁw620 oYY Ve ()
= ’ <i,j> i=1 j=1
i#j
Lets consider an arbitrary state vector |V) in ’HS and since [Nex, H] =0 1
N
PeW(t) =) _(nW)[n Z¢n(9 t)|n)
n=1 n=1

5V ;’s and 1/}; ’s are periodic with a period 27 with respect each variable 6;.

1 . A 2 . . .
Additionally, we also find that [Py,ra, H] = 0 and thus there is conservation of momentum within the system
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Basic Formulation

Considering the Time-dependent Schrédinger equation, Ihaw} = A |w).

aw N 2 N N N
in ‘ Z + 37 uey)v) +ﬁw520 a7 W) + > V(05)oiof W)
i=1 <ij> <i,j>
#O) _ L 9Pyn(0, 1) N
or = Two > T ) + Z ZU(% $n(©,t)|n) + hwe Y (O, t)|n)
<i,n> <i,j>n=1 n=1

N
+ Y V(i) ¥n(©, 1)]i)

<n,i>
We further model the coupling potetials as cosine functions of the 6/s as:
V(0j) = Vo cos(0; — 6;) and U(0j;) = Uo cos(2(60; — 6;))
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Basic Formulation

The same could be written in the matrix form as follows:

] a N N 82 i
'ha‘Ulez hwe + > U(QU)_EWBZ@ Inx vVt + VignWnxe
<ij> i i
0 Vin .- Vin ¥1(©, 1)
) Voo 0 - Vo Y2(0, t)
where Vi = . : : and Wy 1 = :
Vai Va2 - 0 Yn(O, t)
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Basic Formulation

The way we model the coupling changes the physical picture. As the matrix V;\’]xN

Models of Arrangements

Model Matrix Vig, v
[0 Vig 0 - . 0]
Vi 00 Vo eee e 0
0 Ve 0 :
Linear
: : R . Figure 3.2: L
0 0 - o Ve el

0 Vin
Vi 0
0
Cyclic
Vvi 0

Close Packing

Vi
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1
Effects of Disorder When all the rotors are ordered!

When you have Static Disorder
When they’re all Rollin!

H= hwgzao' +V020'0'

<ij>
The Eigen values and eigen vectors turn out to be:

lom) = 1/ 725 ow sin(A2%)n)  Em = hw. + 2cos( 7%
2
- —2
(M=) = | g2y Sty €2 T sin( ) sin( 7))
N=2 N=16
10

UniF
e 2
Uni0F
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When all the rotors are ordered!
When you have Static Disorder
When they’re all Rollin!

Effects of Disorder

Survival Probabilities

2gmm

N+1

1 2pmm
Fravg(p: @) = Wiy > [1 = cos( 1) — cos(

)+%COS(2(P+Q)W L 2(P—!1)7T)]

N+1 N+ 1

15 _
N+1 P=1
When N is even P,u4(p.q) = ‘»1'_4:1 p#ap+q=N+1

N PFLPT9FN+L

N P=¢ pta#FN+1

v P=a pta=N+1
When N is odd Py, (p,q) ={ **'

Vi1 PFLPtg=N+1

¥ PFGpTa#FN+1L
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No of Sites N=2

No of Sites N=3

!

No of Sites N=3

Effects of Disorder

When all the rotors are ordered!

When you have Static Disorde
When they’re all Rollin!

No of Sites N:

e
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When all the rotors are ordered!
When you have Static Disorder
When they’re all Rollin!

Effects of Disorder

Considering the Torsional defects to be a perturbation(F;) to A from Eq(1)

Type | Type Il
0 0
0 0 —1+cos(a—6,) 0 0 —1+ cos(a—p)
H = “ltcosla—b,) 0 —1+cos(B—6u) H =
—1+cos(a—=p) 0 0
—1+4cos( — ) 0 0
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When all the rotors are ordered!
When you have Static Disorder
When they’re all Rollin!

Effects of Disorder

Static Disorder

=N cos(0; — 0,) [1i) (i + 1] + |i + 1)(i]]

((Ne Fr )2y = 27 G .. 27 Du|(N|e~ T |1)2P[{6,}]
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When all the rotors are ordered!
Effects of Disorder .
When you have Static Disorder

When they’re all Rollin!
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When all the rotors are ordered!
When you have Static Disorder
When they’re all Rollin!

Effects of Disorder

N N N N N
N 82 _ N .
Hs = —hwe > 2 > UO;) +hwe Y oo + )Y V(0o (o ()
i=1 i <ij> i=1 i=1j=1
i#j

CONTINUUM LTMIT
dN-)10

DISCRETE SYSTEMS AND LATTLCE
MODELS
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When all the rotors are ordered!
When you have Static Disorder
When they’re all Rollin!

Effects of Disorder

Fourier Transform

We do a Fourier transform of the Hamiltonian and get the TDSE :

N
ngdm@m:—MGkamuHm%Zwkgn

<n,i>
ZN: XN: uj ['wn (Kj= i+s )+1l’;n(K/-+y,v—, f)} + Z vij [J;(K,,—,m t) +1ZI(K,,+7,-—, t)
no<ij> <n,i>
N=2 708 N=2
00008 With 15 rotational states at each site 109 With 21 rotational states at each site
=VYVY
AL
el
} I

T (dimension less time) T (@dmension less time)
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i ?
Scaling Behaviour How does the system scale with N?

We find the time averaged Transition Probability(Pn): Py = lim o0 1 [y [Un,1(7)|?dT

H — 3
In the case of Ordered Chains, Py = SNET)
Time-Averaged Transition probability i Scaling Behavior of <|Uy;(t)%>,g
Ordered Chains
059 0254 m
044 0204 ! ‘orsional defect]
| | defect
o .
034 = 0154 B
2 e \
o =
0.2 = 0.10 "
[ i .
014 L 0054 % m
!
004 '\-\___. —  u 0.00
0 00 400 600 80 1000 0 2 4 e 80 100 120 140
N
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i ?
Scaling Behaviour How does the system scale with N?

Disordered chains Py = ﬁ, where a = 1.5963 4 0.09553 and b = 1.68205 + 0.0744

Disorder Averaged Py

i i 2
Scaling Behavior of <|Uy (t)|*>,,,
054 » 054 w
| |
' Static Disorder 1
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Scaling

Behaviour

Scaling of the Fourier-transformed Hamiltonian

How does the system scale with N?

N * (2M+1)N
N M=1(DOF3) |M=2(DOF5) |[M=3(DOF7) |M=4(DOF9) |M=5(DOF11) |M=6(DOF13) [M=7(DOF15)

2
3

4 58564 114244 202500

5 84035 295245 805255 1856465 3796875

6 93750 705894 3188646 10629366 28960854 68343750

7 546875 5764801 33480783 136410197 439239619 1196015625

8 52488 3125000 46118408 344373768 1714871048 6525845768 20503125000

9 177147 17578125 363182463 3486784401 21221529219|  95440494357| 345990234375

16 688747536| 2441406250000(531726889113616 2.96483E+16 7.35196E+17 1.06467E+19 1.05095E+20

32 5.92966E+16 7.45058E+23|  3.53417E+28 1.09878E+32 6.75641E+34 1.41689E+37 1.38061E+39

64 2.19756E+32 3.46045E+46)  7.8064TE+55|  7.54572E+62 2.85307E+68 1.25474E+73 1.1913E+77

128 1.50914E+63 3.76158E+91 1.9844E+110|  1.77931E+124| 254375E+135| 4.91093E+144|  4.43497E+152

256 3.55862E+124 2.21086E+181 5.6668E+218 4.94678E+246 1.01104E+269 3.78214E+287 3.07328E+303

512| 0.89356E+246

1024
2048
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Future Work

Future Work

Time Evolution by Block Decimation(TEBD)

Implementation of time dependent Density Matrix Renormalisation Group(DMRG)
method to capture the Hamiltonian dynamics of the low lying energy states.

Effect of Defects

Using Green's functions methods to study the effects of chemical and torsional defects
along the chain.

Heat Transport

Study the effects of torsional disorder within the polymer chain on heat transport
when the system is coupled to heat baths on the two ends in a linear geometry.
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Density Matrix Renormalisation Group Method

MRG

Density Matrix Renormalisation Group Method

1. Start from left block B(L,m,), and enlarge it by adding the interaction with a single
site.
a b

2. Reflect such enlarged block, in order to form the right enlarged block. ok i i —
o \:l;.—.—\:l
s super- + interac - two enlarged blocks sed ok [ S

3. Build the super-block from the interaction of the two enlarged blocks. i ;
4. Find the ground state of the super block and the my41 = min(myD, m) eigenstates e : "
of the reduced density matrix of the loft enlarged block with largest cigenvalues. f| e—=—mer—
5. Renormalize all the relevant operators with the matrix Or_p1, thus obtaining B(L + DH!:I
1. mea). :|+0-le
| — S E—

De Chiara, G., Rizzi, M., Rossini, D., Montangero, S.(2008).
Density matrix renormalization group for dummies. Journal of Computational and Theoretical Nanoscience, 5(7)

White, S. R. (1992). Density matrix formulation for quantum renormalization groups
Physical review letters, 69(19), 2863.

Schollwack, Ulrich. (2011)The density-matrix renormalization group in the age of matrix product states.
Annals of Physics 326, no. 1: 96-192.
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Please feel free to write to me at : vijaysai.mocherla@rochester.edu
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